

DYNACUBE OPERATING SYSTEM
An x86 based 32bit Protected mode GUI

Operating System

PROJECT REPORT

SUBMITTED BY

J. Mohammed Hassan Shah (2KC60)

K.R Meenakshi (2KC59)

GUIDED BY

Mrs. G. Andal Jayalakshmi, B.E, M.S

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Thiagarajar College of Engineering

(An Autonomous Institution Affiliated to Madurai Kamaraj University)

MADURAI – 625 015.

April 2004

 ACKNOWLEDGEMENT

 We are grateful to our beloved Principal, Dr. V. Abhai Kumar, who is

responsible for establishing an atmosphere conducive for completing our project

successfully.

 We thank our Head of the Department of Computer Science &

Engineering Dr. N. Ramaraj, who boosted us to work hard in the project and guided

in all academic fronts.

 We are very grateful to our Guide, Mrs. G. Andal Jayalakshmi, B.E.,

M.S., Senior Lecturer in Department of Computer Science & Engineering, who

greatly helped us from the initial stage of this project.

Last but not the least we thank the almighty god who has guided us

through difficult times and has helped us in completing this project.

 ii

I dedicate this project to my beloved parents and my

dear brother …

J. Mohammed Hassan Shah

I dedicate this project to my beloved parents and my

brother …

K.R. Meenakshi

 iii

 CONTENTS

1 SYNOPSIS 1

2 OBJECTIVES 2

3 INTRODUCTION 3

4 GENERAL DESIGN 5

4.1 Design goals 5

4.2 Architectural Choice 5

4.3 Conceptual Design 6

4.4 Design Issues/ Constraints 7

5 MODULE DESIGN AND IMPLEMENTATION 8

5.1 Bootstrap Module 8

5.1.1 Boot loading 8

5.1.2 Kernel Initialization 9

5.1.3 Kernel Functioning 12

5.2 Process Module 13

5.2.1 Forking 15

5.2.2 Task Design 18

5.2.3 Twin-TSS based Multitasking 20

5.2.4 Scheduling Policy 21

5.2.5 Queue Design 22

5.2.6 Message Passing Interface 24

5.3 Memory Module 29

5.3.1 BIMA – Bitmap Memory Allocator 31

5.3.1 Variable Memory Chunk Allocator Design 33

 iv

5.4 Device Drivers Module 34

5.4.1 Introduction 34

5.4.2 PS/2 Keyboard Driver 35

5.4.3 PS/2 Mouse Driver 42

5.4.4 SVGA Video driver 50

5.4.5 Floppy Device Driver 53

5.5 File System Design 68

5.5.1 FAT12 Specification 68

5.5.2 File System Interface 79

5.5.3 File System Server Architecture 81

5.5.4 Implementation of File System 88

5.6 GUI Module Design 90

5.6.1 Conceptual Design 90

5.6.2 Client Interface Design 93

5.6.3 GUI Message Syntax 95

5.6.4 Implementation of the GUI Server 98

6 SAMPLE APPLICATION 113

6.1 DynaPlorer 113

6.2 DynaPad 113

6.3 DynaCalc 114

7 SCREENSHOTS 115

8 CONCLUSION 118

9 BIBLIOGRAPHY 119

 v

FIGURES

Figure 5.1 Address Translation 15

Figure 5.2 Segment Selector 16

Figure 5.3 32-bit Task-State-Segment (TSS) 18

Figure 5.4 Twin-TSS based Multitasking 22

Figure 5.5 Queue Design 24

Figure 5.6 Message Passing – Scenario 1 26

Figure 5.7 Message Passing – Scenario 2 26

Figure 5.8 Segmentation and Paging 29

Figure 5.9 BIMA (BItmap Memory Allocator) 32

Figure 5.10 BIMA Allocation Scheme 32

Figure 5.11 BIMA De-allocation Scheme 33

Figure 5.12 8042’s status register 38

Figure 5.13 Command Byte of 8042 40

Figure 5.14 Mouse movement byte 43

Figure 5.15 Mouse Status byte 47

Figure 5.16 Digital Output Register 55

Figure 5.17 Main Status Register 56

Figure 5.18 Status Register ST0 57

Figure 5.19 Status Register ST1 57

Figure 5.20 Status Register ST2 58

Figure 5.21 Status Register ST3 59

Figure 5.22 Result Phase of Commands 60

Figure 5.23 Command Phase of Read Sector 61

Figure 5.24 Command Phase of Write Sector 62

Figure 5.25 Command Phase of Seek 63

Figure 5.26 Command Phase Of Recalibrate Drive 63

Figure 5.27 Command Phase Of Sense Interrupt 64

Figure 5.28 Result for Sense Interrupt 64

Figure 5.29 FAT Volume Regions 69

Figure 5.30 FAT12 Entry Packing 72

Figure 5.31 Cluster Chaining 73

Figure 5.32 Class Diagram of the Window 99

 vi

Figure 5.33 Class Diagram of the Component 101

Figure 5.34 Class Diagram of the Button 101

Figure 5.35 Class Diagram of Text 103

Figure 5.36 Class Diagram of Label 104

Figure 5.37 Class Diagram of Folderview 105

Figure 5.38 Class Diagram of StartMenu 106

Figure 5.39 Class Diagram of Menu 108

Figure 5.40 Class Diagram of Menubar 109

Figure 5.41 Class Diagram of Cursor 110

 vii

TABLES

Table 5.1 Segments Present in GDT 9

Table 5.2 PROC Structure 14

Table 5.3 Code Snippet showing the logic behind Twin-
TSS based multitasking

21

Table 5.4 Message Format 25

Table 5.5 System Calls in Dynacube 28

Table 5.6 8042 ports and functions 38

Table 5.7 PS/2 Mouse Movement Resolution 48

Table 5.8 Algorithm for 2’s complement conversion 49

Table 5.9 Ports of FDC Registers 55

Table 5.10 Boot Sector and BPB Structure 71

Table 5.11 FAT 32 Byte Directory Entry Structure 74

Table 5.12 FAT Long Directory Entry Structure 77

Table 5.13 Sequence Of Long Directory Entries 77

 viii

1. SYNOPSIS

Dynacube operating system is a contemporary operating system that provides

¾ 32bit Protected mode operation

¾ TSS based multitasking

¾ Process and Memory management

¾ Inter-process communication support

¾ File System management

¾ Device management

¾ Graphical User Interface management

¾ POSIX 1003.1 compliancy

The Dynacube operating system was designed from scratch to provide an

efficient, highly modular, secure and uniform system interface. This design

decision has been upheld till the completion of the project. The main kernel takes

care of managing processes, multitasking, memory management, and Inter-

process communication. The other tasks like the File System Server, Disk Server

and the GUI Server are high privilege tasks that service requests of client

applications. The clients communicate with the Server using the Inter-process

communication support provided by the kernel.

The kernel provides memory management functionality at the page level by

using the BIMA page allocator. The variable chunk level dynamic memory

request is handled at two entry points – one for the kernel and the other for the

user applications.

The File System Server provides a uniform file system interface to the client

irrespective of the underlying file system format. The Disk Server provides the

direct disk manipulation interface to its clients. The GUI Server provides a cleaner

way of screen handling to client applications. The clients are not directly allowed

to access the video hardware but can request the GUI Server to do screen handling

on their behalf. The GUI Server then services the request based on its validity.

1

Dynacube Operating System

2. OBJECTIVES

� To develop an x86 based 32bit protected mode operating system.

� To develop a full-fledged process handling and memory management

subsystem.

� To provide Priority based round robin scheduling

� To provide a sophisticated message-passing interface for inter-process

communication.

� To present an efficient, highly modular and uniform system interface.

� To provide a user-friendly Graphical User Interface.

� To comply with the POSIX 1003.1 standard.

� To create an Easy-to-use Dynacube Application Programming Interface

(DAPI).

2

Dynacube Operating System

3. INTRODUCTION

“An operating system is a system software that provides reasonably high-level

services with unreasonably weird low-level hardware.”

 The art of designing and implementing an operating system is a highly

complicated and rewarding mission. Our decision to develop a full-fledged 32bit

protected mode, multitasking, POSIX compliant operating system with a user-friendly

GUI, was purely made to understand system level programming and to experiment

with the our computer’s hardware. The fascination of making our computer run purely

on our own operating system provided the impetus to make this project a reality,

despite the many setbacks that we received during the initial stages of our project.

 The prime aim of our Dynacube operating system is to provide a uniform and

highly modular interface. We have also aimed at delivering a contemporary operating

system.

The Dynacube operating system was designed to provide the following modules:

¾ Dynacube Kernel and Kernel level Device Drivers

The kernel provides process manipulation, memory management,

inter-process communication and low-level raw device drivers like the

keyboard, mouse and floppy driver.

¾ Dynacube File Server

The Dynacube File Server runs as a separate task and services file-

system requests from the clients. This interaction is based upon the inter-

process communication interface provided by our kernel.

3

Dynacube Operating System

¾ Dynacube Disk Server

The Dynacube Disk Server runs as a separate task and services the

direct disk manipulation requests from the clients. This interaction is based

upon the inter-process communication interface provided by our kernel.

¾ Dynacube GUI Server

The Dynacube GUI Server also runs as a separate task and services the

GUI requests from client applications. Only the GUI Server controls

the screen and clients are not allowed to access the video hardware

directly. Thus a client sends a request to the GUI Server to perform

screen handling on its behalf.

We chose the Linux operating system as our host platform for developing our

operating system, as it provided our favorite C/C++ compilers namely the GCC and

G++ compilers. It also provides a host of other useful utilities like the objdump and

nm, which are very helpful in offline debugging. The chief advantage of using GCC is

that it has strong support for inline assembly – this allowed us to embed assembly

code within our C or C++ code.

We have used VMWare and Bochs as our System Simulators – This has been

a great timesaver for our project. As the usage of system simulators helped us to

continue development and testing of our operating system from within our host

operating system without having to reboot our computer for test boot. After the

completion of our project we have tested our Dynacube operating system on many

real computers and have found our operating system to be stable for long operational

periods.

Description Software
Platform used Redhat Linux 8.0

Assembler NASM

Compilers GCC, G++

Linker LD

Utilities objdump, nm, strip

Virtual System Bochs, VMWare

4

Dynacube Operating System

4. GENERAL DESIGN

4.1 DESIGN GOALS

The Dynacube Operating System has the following goals

• To construct a highly scalable x86 based POSIX compliant operating

system

• To provide a dynamic, highly modular and uniform system interface

• To provide multitasking support, ring based protection and

virtualization of memory.

• To provide a user-friendly Graphical User Interface (GUI).

4.2 ARCHITECTURAL CHOICE

 The targeted systems

• x86 Systems – 486 and above

The choice of architecture is purely based upon the widespread usage of Intel
processors.

Minimum System Requirement

• Intel 486 or Above

• System RAM – 64MB or Above

• Video card – VESA VBE 2.0 compatible, with minimum 1 MB Video

RAM with Linear Frame Buffer support.

• PS/2 mouse and keyboard

• NEC µPD765 or Intel 82072-7 Floppy Disk Controller

5

Dynacube Operating System

4.3 CONCEPTUAL DESIGN

 The Dynacube Operating System has a highly modular design. The key

components of Dynacube operating system are

1. Dynacube Kernel

2. File Server

3. Disk Server

4. DServer – GUI Server

4.3.1 Dynacube Kernel

• The kernel provides support for process handling and memory management.

• The kernel provides protection using the Intel processor’s protected mode

segmentation feature and virtualization of memory by paging mechanism.

• The kernel provides inter-process communication support and interrupt driven

system call interface.

4.3.2 File Server

• The File Server is based on client-server architecture.

• It provides basic file system services to both the kernel and client applications.

• The client and the File Server interact using the inter-process communication

interface provided by the kernel.

4.3.3 Disk Server

• The Disk Server is also based on client-server architecture.

• It provides direct disk manipulation to its clients.

• The File Server acts as a client to the Disk Server.

• The interaction between the Disk Server and the clients is based on the inter-

process communication interface provided by the kernel.

6

Dynacube Operating System

4.4 DESIGN ISSUES AND CONSTRAINTS

• The multitasking support is provided using 32bit Task State Segments (TSS).

• Virtualization of memory is provided using the Intel’s paging mechanism.

• Remapping of Programmable Interrupt Controller (PIC) is done so as not to

interfere with the Intel’s reserved IRQ in protected mode. Thus the IRQ0-

IRQ7 are remapped from interrupt 0x8-0xF to interrupt 0x20-0x28 and the

IRQ8-IRQ15 are remapped from interrupt 0x46-0x4D to interrupt 0x29-0x2F.

The system call IRQ is set as 0x30.

• Creation of virtual 8086 GPF monitor for performing BIOS and real mode

operations while the system is in protected mode.

7

Dynacube Operating System

5. MODULE DESIGN AND IMPLEMENTATION

5.1 BOOTSTRAP DESIGN

5.1.1 Boot loading

 Boot loading is one of the most important aspects of an operating system. The

boot loader is responsible for loading the operating system from the host disk. The

concept of bootstrap is ‘pulling oneself using one’s own boot’s straps ’. When the

system boots up it checks for a boot media, which generally is the floppy disk or the

hard disk. Once the system finds a boot media it searches for the boot partition. In our

Dynacube operating system we use a floppy as our boot media. So when the system

searches for the boot media it finds our floppy disk. The system then checks for boot

signature (0xAA55) at the end of the first sector of the boot floppy. Once the system

agrees with the boot signature it loads the first sector (512 bytes) of the floppy disk at

the memory location 0x7C00 and passes control to it.

The bootstrap, which is working in the real mode environment, does the following:

• Disables hardware interrupts.

• Synchronizes the various segment registers.

• Enables the A20 line.

• Loads the kernel from the floppy disk to memory location 0x100000 (1MB).

• Sets up the protected mode bit in control register 0 (CR0) and loads a simple

GDT in the GDTR. This GDT contains three segments – 1 code segment, 1

data segment and 1 stack segment each spanning an address from 0x00000000

to 0xFFFFFFFF (4GB).

• It flushes the 16bit instructions from the instruction prefetch pipe by jumping

to a 32bit code. Now the system will automatically enter the protected mode.

• After this the bootstrap passes control to the kernel, which is currently loaded

at the 0x100000.

8

Dynacube Operating System

5.1.2 Kernel Initialization

 The kernel has to do self-initialization and environment initialization

before the system can start functioning. The kernel after receiving the control from the

bootstrap does the following initializations:

• The kernel disables hardware interrupts.

• The kernel initializes the Interrupt Descriptor Table (IDT) and loads it in the

IDTR.

• Creates a configurable global descriptor table and loads the GDTR with the

newly constructed GDT. In Dynacube the GDT contains the following

segments.

Entry

No

Segment

Description

Segment

Base

Segment

Limit

Protection

Level

1 NULL 0 0 0

2 NULL 0 0 0

3 Kernel Data 0x0 0xFFFFFFFF 0

4 Kernel Code 0x0 0xFFFFFFFF 0

5 Kernel Stack 0x0 0x1100000 0

6 File Server Stack 0x0 0x1000000 0

7 GUI Server Stack 0x0 0xF00000 0

8 Disk Server Stack 0x0 0xE00000 0

9 System LDT 0x0 0xF 0

10 User LDT 0x0 0xF 0

11 System TSS &_system sizeof(TSS) 0

12 TASK1 TSS &_task[0] sizeof(TSS) 0

13 TASK2 TSS &_task[1] sizeof(TSS) 0

14 NULL 0x0 0x0 0

. NULL 0x0 0x0 0

. NULL 0x0 0x0 0

255 NULL 0x0 0x0 0

Table 5.1 - Segments Present in GDT

9

Dynacube Operating System

The protection level has 0 as the highest protection level and 3 as the lowest

protection level. So the kernel and kernel-mode device drivers operate at the level 0

and untrustable code like user applications and utility programs run at level 3. This

helps the kernel to be secure from malicious user applications. Also paging of

memory and the resulting virtualization of memory provides protection within level 3

processes from each other. Paging also provides protection with two levels – namely

the Supervisor level and the User level.

The _system, _task[0] and _task[1] are storage variables for the TSSes used by the

Dynacube operating system.

• The kernel then remaps the Programmable Interrupt Controller (PIC) and thus

makes the IRQ 0 – 7 to be mapped to IRQ 0x20 – 0x27 and the IRQ 8-15 to be

mapped to IRQ 0x28 – 0x2F. The kernel also disables the Timer, Keyboard

and Mouse IRQ.

• The kernel initializes the Task State Segments. The TSS initialization

consists of

o Clearing the _system, _task[0] and _task[1] TSS structure.

o Capturing the Systems internal state in the _system TSS.

o Setting up the System LDT and patching up the GDT entry for

_system, _task[0] and _task[1] TSS entries.

o Loading the System LDT in the LDTR.

• The kernel then initializes Process structures that hold individual process’

state. These structures are popularly known as PCBs (Process Control Block).

In Dynacube we store the system’s runtime state when the process was

suspended from execution. Apart from the internal state of the machine we

also store other information regarding a process in its PCB.

10

Dynacube Operating System

• The kernel then initializes the various queues it will use during its execution

phase. The queues that are initialized are

o Ready queue

o Message queue

o Timer queue

o Interrupt queue

o GUI queue

o FS queue

o Various Device queues

• Dynacube kernel then initializes the zorder structure which is used by the GUI

Server for maintain window internal ordering.

• The kernel then initializes the hashmap and list structures, which are also used

by the GUI Server for its internal processing.

• The kernel initializes the Video hardware to get an 800x600 resolution with a

color depth of 16 bits/pixel using the VESA VBE BIOS functions.

• The kernel initializes the mouse driver, which in turn initializes the PS/2

mouse for stream mode operation.

• The kernel then initializes the kernel and user page directories. It then sets the

control register 3 (CR3) with the address of the kernel page directory and

maps the linear frame address of the SVGA controller within the kernel space

using the kernel page directory. The setting up of cr3 causes the system to

enter paged memory model.

• The kernel then initializes the File System Server structures.

• The kernel then forks out the NULL process. This process is forked out to

remain as an idle process so as to keep the system running even when there are

no other processes running in the system.

• The kernel then starts the GUI Server.

• The kernel then starts the Disk Server.

11

Dynacube Operating System

• The kernel then starts the File Server.

• The kernel then initializes the System timer, which is crucial for a

multitasking system. The reason is that the timer is the used for producing

interrupts at specific intervals of time. This causes the kernel to gain control of

the system whenever a timer interrupt occurs. This makes the system pre-

emptable.

• The kernel enables the Timer, Keyboard, Floppy and PS/2 Mouse IRQs.

• The kernel enables hardware interrupts.

The moment the kernel enables the hardware interrupts the Timer generates an

interrupt that is passed as IRQ 0x20 from the PIC to the kernel. This sets the system in

motion as the system starts to multitask.

5.1.3 Kernel Functioning

Once the system starts with a timer interrupt the system passes through the

kernel ‘s interrupt handler. The handler finds out the source of interrupt (in this case it

is the Timer) and dispatches the control to the scheduling function. The scheduling

function’s job is to find the next process that will be allowed to run. The currently

suspended process’ PCB is synchronized with the current internal state of the system.

The chosen process’ PCB is loaded into the TSS and then the new process starts to

execute until the next timer interrupt occurs (or) the process voluntarily yields control.

The user processes can request services from the kernel by invoking the system call

interface, which the kernel handles to provide the requested service to the client. The

system-call interrupt request number for Dynacube operating system is 0x30.

12

Dynacube Operating System

5.2 PROCESS MODULE DESIGN

The Process module is one of the two modules that make the Dynacube kernel.

The process module is basically used for process manipulation. The process’ state

information and the system’s state information are stored in the process’ PCB. The

PCB or the Process Control Block has the following structure

typedef unsigned char DB; // 1 byte
typedef unsigned short DW; // 2 byte
typedef unsigned int DD; // 4 byte

typedef struct
 {
 boolean avl;
 DW ppid;
 DW pre_task_link;
 DD esp0;
 DW ss0;

 DD esp1;
 DW ss1;

 DD esp2;
 DW ss2;

 DD cr3;
 DD eip;
 DD eflags;
 DD eax;
 DD ecx;
 DD edx;
 DD ebx;
 DD esp;
 DD ebp;
 DD esi;
 DD edi;
 DW es;

 DW cs;
 DW ss;
 DW ds;
 DW fs;
 DW gs;

 DW ldt_sel;
 DW flags; //T

13

Dynacube Operating System

 DW io_map;
 DW msg_q_delim; //Size of q = 2^16
 DD recv_addr; // To store the address from the recv call when blocked
 DD wait_int_num; //The interrupt that the process wants to receive
 DD time_out; //The timeout registered with the TIMER

 } PROC;

//The PROC structure is Dynacube’s PCB structure

Table 5.2 – PROC Structure

As the structure of the PCB reveals, it contains the saved values of the

general-purpose registers, segment registers and control registers (CR3) of the

processor. It also contains the various privilege level stacks with their corresponding

stack pointers that are used by the processor while switching between various

protection levels. Apart from these the PROC (or) PCB structure also contains special

kernel-usable information like the msg_q_delim. The usage of these fields will be

discussed in the following sections.

The avl field is used to check whether a PCB is free to be used or is already in

use by some other process. The ppid field is used to store the parent process id. The

ldt_sel field is used for the LDT selector for this process when it will be loaded into a

TSS for running.

The flags field is used to store TSS specific flags, which can be used to set the

TRAP bit and thus enable the process to be debugged after each instruction. This is

made to work by interrupting the process after every instruction by calling the

DEBUG exception. Thus the kernel could use this flags field to debug user processes.

The io_map is used as a pointer to the I/O permission bitmap that is used for

allowing (or) disallowing user processes to access specific I/O ports.

The msg_q_delim is used as the delimiter in the message queue structure that

is used for inter-process communication.

The kernel uses the recv_addr when a process blocks for a message from its

message queue when its message queue is empty. In this case the receiving address of

the process is stored in the recv_addr and when a process sends a message to this

blocked process we use this field to copy the message from its message queue.

14

Dynacube Operating System

Kernel saves the required IRQ value for which a process might want to be

notified in the wait_int_num.

The kernel saves the timeout after which a requesting process must be woken

up from its suspended state. This value is stored in time_out.

5.2.1 Forking

The kernel forks out a process on request. The process of forking out can be

described as a series of the following steps:

• The kernel checks out the PCB array for a free PCB that can be used for the

new process. If it finds an empty slot it proceeds to the next step. Otherwise

the kernel returns FORK_FAILURE error to the invoking process.

• The kernel then allocates free pages to the process by calling the findpage

function till the necessary number of pages has been allotted. If the findpage

returns valid pages till the last request the kernel proceeds to the next step,

otherwise it return FORK_FAILURE to the invoking process. The findpage

function returns the page number when it has a free page (or) returns

PAGE_NOT_FOUND when it has run out of free pages. The size of each page

is 4KB. Thus a program whose binary image size is 200KB needs at least 50

pages.

• The base address of each page is mapped into the process’ page directory

entries. So that the process will be thinking that it is running in a memory

address spanning from 0x0 to MAX_PROC_SIZE. However internally these

addresses will be resolved to altogether different memory locations by the

MMU (Memory Management Unit) by the using the page directory as

translation table.

15

Dynacube Operating System

Figure 5.1 – Address Translation

• The kernel sets up the LDT for the newly forked out process and then

initializes the segment registers in its PCB so that they point to the entries in

the LDT rather than the GDT, which is performed by setting up the Table

Indicator bit (TI) in the Segment selectors. This provides better abstraction and

protection. The RPL is set to 0x3 so as to run the process in the protection

level 3.

Figure 5.2 – Segment Selector

16

Dynacube Operating System

• The kernel then sets up the Stack frame for the forked out process and

initializes the instruction counter. The kernel also initializes the eflags to

0x2|(1<<9). This is done to ensure that the eflags conforms to the Intel

specification of the reserved bit and IF flag is set.

• The kernel then loads program’s binary image to the allocated memory by

sending a request to the File Server to load the binary file. The File Server

then loads the image into memory with the help of the Disk Server. Once the

loading is complete the process is removed from the FS queue and added to

the ready queue. However if there is a failure then the process is killed and the

space allotted to it and its PCB entries are freed so that they can be used in

future.

17

Dynacube Operating System

5.2.2 Task Design

 The kernel contains three TSS structures – One for the kernel and two for

multitasking purposes. The task structure has the following composition:

Figure 5.3 – 32-bit Task-State-Segment (TSS)

18

Dynacube Operating System

The processor updates the dynamic fields when a task is suspended during a

task switch. The following are dynamic fields:

General-purpose register fields

State of the EAX, ECX, EDX, EBX, ESP, EBP, ESI, and EDI registers prior to the

task switch.

Segment selector fields

Segment selectors stored in the ES, CS, SS, DS, FS, and GS registers prior to the task

switch.

EFLAGS register field

State of the EFAGS register prior to the task switch.

EIP (instruction pointer) field

State of the EIP register prior to the task switch.

Previous task link field

Contains the segment selector for the TSS of the previous task. The processor reads

the static fields, but does not normally change them. These fields are set up when a

task is created. The following are static fields:

LDT segment selector field

Contains the segment selector for the task’s LDT.

CR3 control register field

Contains the base physical address of the page directory to be used by the task.

Privilege level-0, -1, and -2 stack pointer fields

These stack pointers consist of a logical address made up of the segment

selector for the stack segment (SS0, SS1, and SS2) and an offset into the stack

(ESP0, ESP1, and ESP2).

T (debug trap) flag (byte 100, bit 0)

When set, the T flag causes the processor to raise a debug exception when a

task switch to this task occurs.

I/O map base address field

Contains a 16-bit offset from the base of the TSS to the I/O permission bit map

and interrupt redirection bitmap. When present, these maps are stored in the

TSS at higher addresses. The I/O map base address points to the beginning of

the I/O permission bit map and the end of the interrupt redirection bit map.

19

Dynacube Operating System

5.2.3 Twin-TSS based Multitasking

In Dynacube operating system, multitasking is achieved by the usage of Twin-

TSS scheduling method and the System Timer. The system timer is responsible for

generating timer interrupts at pre-specified intervals of time. The timed interrupts

allow the system to transfer the flow control to the kernel’s interrupt handling code.

This allows the kernel to run multiple processes for fixed time slices in a gyratory

fashion – This creates the illusion of concurrent execution of processes.

 The switching between processes is especially interesting as we use only two

TSS segments in the GDT for multitasking as compared to the other contemporary

kernels that use as many TSS as there are processes running under them. Multitasking

can be explained as a series of the following steps:

1. The kernel loads the Task Register with the kernels TSS during the system

initialization phase.

2. During subsequent calls to the schedule function generally caused by the

Timer interrupt the schedule function first synchronizes the PCB of the

currently suspended process with the system’s state.

3. It then finds the next candidate from the ready queue that is eligible to run.

The selected process’ PCB is copied to the TSS that was used by the

penultimate process. The reason for doing this lies in the fact that a suspended

TSS cannot be called recursively. So we use the second TSS and clear the

Busy Bit of the first TSS segment.

20

Dynacube Operating System

This cycle between step 2 and 3 continues till the system is shutdown. This

concept gives a clean way of implementing scheduling.

 which_task = !which_task;

 //Clearing Busy Bit

 t = (SEG_DESC*)(GDT_BASE+SYS_TSS_SEL*8);

 t->flags_8_15 &= ~0x2;

 asm("ltr %%ax"::"a"(SYS_TSS_SEL*8));

 if(which_task)

 {

 t = (SEG_DESC*)(GDT_BASE+TASK1_TSS_SEL*8);

 t->flags_8_15 &= ~0x2;

 asm("lcall %0,$0"::"i"(TASK1_TSS_SEL*8));

 }

 else

 {

 t = (SEG_DESC*)(GDT_BASE+TASK2_TSS_SEL*8);

 t->flags_8_15 &= ~0x2;

 asm("lcall %0,$0"::"i"(TASK2_TSS_SEL*8));

 }

Table 5.3 - Code Snippet showing the logic behind Twin-TSS based multitasking

5.2.4 Scheduling Policy

The scheduling routine is responsible for choosing the next candidate from the

pool of candidate processes available in the ready queue. The scheduling algorithm

used in Dynacube operating system is called the “Priority based round robin”

algorithm that gives fixed quantity time slices to each of the processes in the ready

queue in an order that is dependent on their priority levels. This makes higher priority

processes to get the opportunity to run with reduced waiting time as compared to

other less privileged processes.

21

Dynacube Operating System

P1’s PCB

Save state
 at t1

Save state
 at t2

Run t1

Load P2
 @ t2

Load P1
 @ t1

t2

t1

TSS 1

TSS 2

Intel x86 Processor

Ready queue

P1 P2 P4 P5 free free

P2’s PCB
P3’s PCB

P4’s PCB
P5’s PCB

P6’s PCB
PN-2’s PCB

PN-1’s PCB
PN’s PCB

Run t2

Twin TSS based
Multitasking

Figure 5.4 Twin-TSS based Multitasking

22

Dynacube Operating System

5.2.5. Queue Design

Dynacube uses the following queues for process manipulation:

• Ready queue – This queue is used to store the process ids of processes that are

ready to run, and are waiting for their time-slice.

• Message queue – This queue is used for processes that want to receive

messages from other processes when there is no message for this process. In

this case the kernel simply suspends the requesting process and removes it

from the ready queue and enqueues it in the message queue.

• Timer queue – This queue is used for storing the process ids of processes that

request the kernel to be woken up after a given timeout. The kernel removes

the process from the ready queue and places it in the timer queue.

• Interrupt queue – This queue is used for process ids of processes that request

the kernel to be notified when a specific interrupt occurs that is indicated by

the wait_int_num field in the PCB structure. The kernel removes it from the

ready queue and places it in the timer queue.

• GUI queue – This queue is used for storing process ids from the ready queue

for processes that send messages to the GUI Server. This is done primarily to

stop the process from doing anything till the GUI Server has completed its

previous requests.

• FS queue – This queue is used for storing process ids that send requests to the

File Server. The kernel removes the pid from the ready queue and enqueues it

in the FS queue. The restoration of the pid to ready queue occurs when the FS

Server has completed the request.

• Device Queues – These queues are used for queuing process that request

service of certain devices – In Dynacube we use it for blocking processes that

request service from the Disk Server, which uses the floppy device.

23

Dynacube Operating System

Fork

Fork or existing process

1

12

Ready queue

Message queue

Timer queue

Interrupt queue

FS queue

Device queue

GUI queue

File

Server

GUI

Server

Disk

Server

Dynacube

Kernel

Intel

Processor

Figure 5.5 - Queue Design

5.2.6 Message Passing Interface

The message-passing interface is one of the most important interfaces that

Dynacube kernel provides which is used for inter-process communication. The

message-passing interface follows the following rules

1. Asynchronous send - A process can send messages to another process without

having to block.

2. Synchronous receive – A process can receive message by using the system call

recv. The call is immediately returned if there is message for the requesting

process from other processes. However if the message buffer is empty then the

requesting process is removed from ready queue and enqueued to the message

queue.

24

Dynacube Operating System

The message format: The process must conform to the following format while

sending messages.

 #define MAX_MSG_BUF 64

 typedef struct {

 DW from_pid;

 DW type;

 DW sub_type;

 DD length;

 DB msg_buf[MAX_MSG_BUF];

 }MSG;

Table 5.4 – Message Format

 The from_pid field is to store the process from which the message originated.

The kernel however overwrites this value by the sending process’ pid. This is done to

thwart any attempt by the sending process to fake identity. The type and sub_type

fields have message specific meaning. The length field informs the kernel about the

size of msg_buf utilized. Thus the kernel has to copy only the used part of the

message into its address space instead of the entire chunk. This boosts performance.

 The kernel actually buffers the received messages of every process till the

process does a recv to receive the message. The kernel message buffer resides in the

ring 0 protected segment. Thus we can effectively safeguard messages from prying

processes.

25

Dynacube Operating System

Send to P2 @ t1

t1 < t2 < t3

Message
@ t3

Receive
@ t2

P2

Dynacube Kernel

P1

Figure 5.6 - Message Passing – Scenario 1

Message
@ t4

Receive
@ t1

Send to
P2 @ t2

P2

 Dynacube Kernel Message Queue

t1 < t2 < t3 < t4

P1

Unblock
P2 @ t3

Figure 5.7 - Message Passing – Scenario 2

26

Dynacube Operating System

5.2.7 System Call Interface

Dynacube operating system provides its services via the system call interface which

can be accessed by using INT 0x30. The system calls provided by Dynacube are

Function No.

Description

0 Exit system call – To kill the invoking process.

1 Fork system call – Used to fork out a new process

3 Send system call – Used to send messages to other processes

4 Receive system call – Used to receive messages from other processes

5 Sleep system call – To request the kernel to wake up the invoking

process to be woken up after the specified timeout.

6 Wait for interrupt system call – To get notified by the kernel when a

specified interrupt occurs.

7 Wait for an interrupt and also wait for a Timer interrupt system call –

To get notified by the kernel when a specified interrupt and the timer

interrupt occurs.

8 Read floppy sector system call

9 Write floppy sector system call

11 GUI processing completion system call – Used to remove a blocked

process from the gui queue and add it to the ready queue.

12 FS processing completion system call – Used to remove a blocked

process from the fs queue and add it to the ready queue.

13 File opening system call.

14 Closes an already open file.

15 Read bytes from an opened file.

16 Write bytes into an opened file.

17 Create a file

18 Open directory

19 Create Directory

20 Close Directory

21 Read Directory

27

Dynacube Operating System

22 Remove file

23 Rename

30 Get System Date

31 Set System Date

32 Get System Time

33 Set System Time

Table 5.5 – System Calls in Dynacube

28

Dynacube Operating System

5.3. MEMORY MODULE DESIGN

 The main work of the memory module is to provide consistent and protected

access to physical memory.

The memory model used by Dynacube operating system is called the

Segmented Paged memory model. The advantage of this model lies in the fact that

it allows complete virtualization of memory along with the protection offered by

segmentation. The client process is made to believe that it is executing in a memory

space that spans from 0x0 to MAX_PROC_SIZE. In reality this logical address upon

translation to linear address, which upon further translation to physical memory gives

the real address, which is not from 0x0 to MAX_PROC_SIZE but some other address

range.

Figure 5.8 – Segmentation and Paging

29

Dynacube Operating System

 This illusion is necessary for non-relocatable programs that by default assume

that it is running at some predefined location (like 0x0 for plain binary or 0x100 for

COM programs). As symbol resolution is impossible in plain binary code it is better

to provide the same address in which the program thinks it is executing. However this

again leads to another problem – At any given instant only one process can be

allowed to occupy that address. This will mean that for every task switch we have to

reload the image files to that location, which will be a great performance hindrance.

To overcome this obstacle we perform virtualization of memory, which is

accomplished by the usage of paging mechanism. The concept is pretty simple we just

make the client program work by resolving all memory references by the program and

then correctly mapping it to physical memory. The MMU or the Memory

Management Unit, which takes care of the address translation, provides this

functionality. All that we have to do is load the correct translation tables. These

translation tables are called page directories.

 In Dynacube we use two page directories. The first page directory is the

kernel’s page directory that provides a one to one mapping of the entire memory. This

is necessary for the kernel to be able to access the entire memory space without

generating page faults (#PG). The second page directory is used for client processes –

In this page directory we map the kernel’s memory space as a one-to-one mapping.

However the remaining entries are dynamically mapped using the BIMA Page

Allocator. Thus each user process can get a total of 4MB space as we reserve one

directory entry for each process.

In general a page directory contains 1024 entries and each entry has in the directory

contains the pointer to page tables each of which has 1024 entries. Each entry in the

page table contains the address that points to the real base address of a page. Thus a

system contains 1024 * 1024 pages which comes to 2^20 pages. As each page is of

4KB size the total memory that can be addressed by this scheme = 4KB * 2^20 =

2^32 or 4GB memory space.

30

Dynacube Operating System

5.3.1 BIMA – Bitmap Memory Allocator

The Bitmap Memory Allocator is the page allocator for Dynacube operating

system. The BIMA uses a bitmap representation of the physical memory. In this

bitmap a single bit represents a 4KB page. Thus for a given system RAM of N MB

the bitmap size is only (N * 32) bytes. Thus for a 256 MB RAM our BIMA requires

only 8192 bytes (or) just two 4KB pages.

The BIMA uses the bitmap and a counter called the pindex, which is used to

point to the recently used byte in the bitmap. The BIMA uses the technique of Divide

and Conquer to find free pages. It first searches for a DWORD starting from the

DWORD pointed by the pindex till a DWORD is found that on ANDing with

0xFFFFFFFF doesn’t give 0xFFFFFFFF. This means that DWORD has a free page.

We try to find the page by first ANDing the lower word with 0xFFFF if that returns

0xFFFF then that word has no free pages. We do this till we get the free page.

BIMA Deallocation

The BIMA’s deallocation algorithm is simple. Whenever a request to

deallocate a page comes to the BIMA it just clears the corresponding bit in the

bitmap. This way it provides a faster way of deallocation as compared to other linked-

list based memory management techniques.

The following code snippet shows the single-line deallocation routine: We call it the

freepage routine.

frmlist[index/32] ^= (1<<index%32);

31

Dynacube Operating System

0- 4K

4K-8K

8K-12K

12K-16K

16K-20K

20K-24K

24K-28K

28K-32K

252MB-256MB

Legend

 Free Space

Used Space

Physical Memory

Bitmap Representation of Physical Memory

Head

Head

Head

BIMA

Head

BIMA

BIMA

Figure 5.9 - BIMA (BItmap Memory Allocator)
32

FINDPAGE request

Return PAGE

Figure 5.10 BIMA Allocation Scheme

Dynacube Operating System

De-allocate page 3 request

Head

BIMA

Head

BIMA

Head

Figure 5.11 BIMA De-allocation Scheme

BIMA

5.3.2 Variable Memory Chunk Allocator Design

The variable memory chunk allocator has two principal parts – kernel mode

memory allocator and user mode memory allocator. The kernel mode memory

allocator provides memory by getting free pages from the findpage function. Then it

sets the Supervisor bit in the page entry.

In the user mode allocation the memory is obtained from the findpage

allocator but the User bit is set in the page entry. And the page is mapped into the

address space of the process. This ensures that the client application gets memory

within its own addressable space with protection level 3.

33

Dynacube Operating System

5.4 DEVICE DRIVER MODULE

5.4.1 Introduction

A device driver is a software layer that lies between the applications and the actual

device. A Device Driver is the user’s window to access a device. The device driver is

developed for the following reasons

• Providing abstraction to the Operating System of the device being used.

• To manage simultaneous access of applications on a device.

• To provide a clean standard interface to a device.

Character devices

A character (char) device is one that can be accessed as a stream of bytes

(like a file); a char driver is in charge of implementing this behavior. Such a

driver usually implements at least the open, close, read, and write system calls.

Eg: Video driver, keyboard driver, and mouse driver

Block devices

A block device is something that can host a file system, such as a disk.

The block and char devices differ only in the way data is managed internally by

the kernel, and thus in the kernel/driver software interface. Like a char device,

each block device is accessed through a file system node and the difference

between them is transparent to the user.

Eg: Floppy Driver

34

Dynacube Operating System

5.4.2 PS/2 Keyboard Driver

Keyboards consist of a large matrix of keys, all of which are monitored by an on-

board processor (called the "keyboard encoder".) The specific processor varies from

keyboard-to-keyboard but they all basically do the same thing: Monitor which key(s)

are being pressed/released and send the appropriate data to the host. The processor

takes care of all the debouncing and buffers any data in its 16-byte buffer, if needed.

The motherboard contains a "keyboard controller" that is in charge of decoding all of

the data received from the keyboard and informing your software of what's going on.

All communication between the host and the keyboard uses an IBM protocol.

Reset:

At power-on or software reset (see the "Reset" command) the keyboard performs

a diagnostic self-test referred to as BAT (Basic Assurance Test) and loads the

following default values:

• Typematic delay 500 ms.

• Typematic rate 10.9 cps.

• Scan code set 2.

• Set all keys typematic/make/break.

When entering BAT, the keyboard enables its three LED indicators, and turns them

off when BAT has completed. At this time, a BAT completion code of either 0xAA

(BAT successful) or 0xFC (Error) is sent to the host. This BAT completion code

must be sent 500~750 milliseconds after power-on.

Many of the keyboards ignore their CLOCK and DATA lines until after the BAT

completion code has been sent. Therefore, an "Inhibit" condition (CLOCK line low)

may not prevent the keyboard from sending its BAT completion code.

Make Codes, Break Codes, and Typematic Repeat

The make code is the code that is sent to the computer when a key is pressed.

And a Break code is sent to the computer when the key is released. When a key is

35

Dynacube Operating System

pressed and held down, that key becomes typematic, which means the keyboard will

keep sending that key's make code until the key is released or another key is pressed.

Command Set:

A few notes regarding commands the host can issue to the keyboard:

• The keyboard clears its output buffer when it receives any command.

• If the keyboard receives an invalid command or argument, it must respond

with "resend" (0xFE).

• The keyboard must not send any scancodes while processing a command.

• If the keyboard is waiting for an argument byte and it instead receives a

command, it should discard the previous command and process this new one.

Below are all the commands the host may send to the keyboard:

• 0xFF (Reset) - Keyboard responds with "ack" (0xFA), then enters "Reset"

mode. (See "Reset" section.)

• 0xFE (Resend) - Keyboard responds by resending the last-sent byte. The

exception to this is if the last-sent byte was "resend" (0xFE). If this is the

case, the keyboard resends the last non-0xFE byte.

 The next six commands can be issued when the keyboard is in any mode, but it

only effects the behavior of the keyboard when in "mode 3" (ie, set to scan code

set 3.)

• 0xFD (Set Key Type Make) - Disable break codes and typematic repeat for

specified keys. Keyboard responds with "ack" (0xFA), then disables scanning

(if enabled) and reads a list of keys from the host. These keys are specified by

their set 3 make codes. Keyboard responds to each make code with "ack".

 Host terminates this list by sending an invalid set 3 make code (eg, a valid

command.) The keyboard then re-enables scanning (if previously disabled).

• 0xFC (Set Key Type Make/Break) - Similar to previous command, except this

one only disables typematic repeat.

• 0xFB (Set Key Type Typematic) - Similar to previous two, except this one

only disables break codes.

36

Dynacube Operating System

• 0xFA (Set All Keys Typematic/Make/Break) - Keyboard responds with "ack"

(0xFA). Sets all keys to their normal setting (generate scan codes on make,

break, and typematic repeat)

• 0xF9 (Set All Keys Make) - Keyboard responds with "ack" (0xFA). Similar to

0xFD, except applies to all keys.

• 0xF8 (Set All Keys Make/Break) - Keyboard responds with "ack" (0xFA).

 Similar to 0xFC, except applies to all keys.

• 0xF7 (Set All Keys Typematic) - Keyboard responds with "ack" (0xFA).

 Similar to 0xFB, except applies to all keys.

• 0xF6 (Set Default) - Load default typematic rate/delay (10.9cps / 500ms), key

types (all keys typematic/make/break), and scan code set (2).

• 0xF5 (Disable) - Keyboard stops scanning, loads default values (see "Set

Default" command), and waits further instructions.

• 0xF4 (Enable) - Re-enables keyboard after disabled using previous command.

• 0xF3 (Set Typematic Rate/Delay) - Host follows this command with one

argument byte that defines the typematic rate and delay as follows:

The Keyboard Controller

The 8042 chip acts as a keyboard controller and the mouse controller in the

PS/2 compatible mode.

The 8042 contains the following registers:

• A one-byte input buffer - contains byte read from keyboard; read-only

• A one-byte output buffer - contains byte to-be-written to keyboard; write-only

• A one-byte status register - 8 status flags; read-only

• A one-byte control register - 7 control flags; read/write

The first three registers (input, output, status) are directly accessible via ports 0x60

and 0x64. The last register (control) is read using the "Read Command Byte"

command, and written using the "Write Command Byte" command.

37

Dynacube Operating System

 The following table shows how the peripheral ports are used to interface the 8042:

Port
Read /

Write
Function

0x60 Read Read Input Buffer

0x60 Write Write Output Buffer

0x64 Read Read Status Register

0x64 Write Send Command

Table 5.6 - 8042 ports and functions

Writing to port 0x64 doesn't write to any specific register, but sends a

command for the 8042 to interpret. If the command accepts a parameter, this

parameter is sent to port 0x60. Likewise, any results returned by the command may

be read from port 0x60.

Status Register:

The 8042's status flags are read from port 0x64. They contain error

information, status information, and indicate whether or not data is present in the

input and output buffers. The flags are defined as follows:

 PS/2-compatible mode:

PERR TO MOBF INH A2 SYS IBF OBF

Figure 5.12 8042’s status register

• OBF (Output Buffer Full) - Indicates when it's okay to write to output buffer.

0: Output buffer empty

1: Output buffer full

• IBF (Input Buffer Full) - Indicates when input is available in the input buffer.

0: Input buffer empty - No unread input at port 0x60

1: Input buffer full - New input can be read from port 0x60

38

Dynacube Operating System

• SYS (System flag) - Post reads this to determine if power-on reset, or software

reset.

0: Power-up value - System is in power-on reset.

1: BAT code received - System has already been initialized.

• A2 (Address line A2) - Used internally by the keyboard controller

0: A2 = 0 - Port 0x60 was last written to

1: A2 = 1 - Port 0x64 was last written to

• INH (Inhibit flag) - Indicates whether or not keyboard communication is

inhibited.

0: Keyboard Clock = 0 - Keyboard is inhibited

1: Keyboard Clock = 1 - Keyboard is not inhibited

• TxTO (Transmit Timeout) - Indicates keyboard isn't accepting input (kbd may

not be plugged in).

0: No Error - Keyboard accepted the last byte written to it.

1: Timeout error - Keyboard didn't generate clock signals within 15 ms of

"request-to-send".

• RxTO (Receive Timeout) - Indicates keyboard didn't respond to a command

(kbd probably broke)

0: No Error - Keyboard responded to last byte.

1: Timeout error - Keyboard didn't generate clock signals within 20 ms of

command reception.

• PERR (Parity Error) - Indicates communication error with keyboard (possibly

noisy/loose connection)

0: No Error - Odd parity received and proper command response received.

1: Parity Error - Even parity received or 0xFE received as command response.

• MOBF (Mouse Output Buffer Full) - Similar to OBF, except for PS/2 mouse.

0: Output buffer empty - Okay to write to auxiliary device's output buffer

1: Output buffer full - Don't write to port auxiliary device's output buffer

• TO (General Timeout) - Indicates timeout during command write or response.

(Same as TxTO + RxTO.)

0: No Error - Keyboard received and responded to last command.

1: Timeout Error - See TxTO and RxTO for more information.

39

Dynacube Operating System

Keyboard Controller Commands:

Commands are sent to the keyboard controller by writing to port 0x64. Command

parameters are written to port 0x60 after the command is sent. Results are returned on

port 0x60. Always test the OBF ("Output Buffer Full") flag before writing commands

or parameters to the 8042.

• 0x20 (Read Command Byte) - Returns command byte. (See "Write Command

Byte" below).

• 0x60 (Write Command Byte) - Stores parameter as command byte. Command

byte defined as follows:

PS/2-compatible mode:

-- XLAT _EN2 _EN -- SYS INT2 INT

Figure 5.13 Command Byte of 8042

o INT (Input Buffer Full Interrupt) - When set, IRQ 1 is generated when

data is available in the input buffer.

0: IBF Interrupt Disabled - You must poll STATUS<IBF> to read

input.

1: IBF Interrupt Enabled - Keyboard driver at software INT 0x09

handles input.

o SYS (System Flag) - Used to manually set/clear SYS flag in Status

register.

0: Power-on value - Tells POST to perform power-on

tests/initialization.

1: BAT code received - Tells POST to perform "warm boot"

tests/initialization.

o OVR (Inhibit Override) - Overrides keyboard's "inhibit" switch on

older motherboards.

0: Inhibit switch enabled - Keyboard inhibited if pin P17 is high.

1: Inhibit switch disabled - Keyboard not inhibited even if P17 = high.

40

Dynacube Operating System

o _EN (Disable keyboard) - Disables/enables keyboard interface.

0: Enable - Keyboard interface enabled.

1: Disable - All keyboard communication is disabled.

o PC ("PC Mode") - Enables keyboard interface somehow???

0: Disable

1: Enable

o XLAT (Translate Scan Codes) - Enables/disables translation to set 1

scan codes.

0: Translation disabled - Data appears at input buffer exactly as read

from keyboard

1: Translation enabled - Scan codes translated to set 1 before put in

input buffer

o INT2 (Mouse Input Buffer Full Interrupt) - When set, IRQ 12 is

generated when mouse data is available.

0: Auxiliary IBF Interrupt Disabled

1: Auxiliary IBF Interrupt Enabled

o _EN2 (Disable Mouse) - Disables/enables mouse interface.

0: Enable - Auxiliary PS/2 device interface enabled

1: Disable - Auxiliary PS/2 device interface disabled

• 0x90-0x9F (Write to output port) - Writes command's lower nibble to lower

nibble of output port (see Output Port definition.)

• 0xA1 (Get version number) - Returns firmware version number.

• 0xA4 (Get password) - Returns 0xFA if password exists; otherwise, 0xF1.

• 0xA5 (Set password) - Set the new password by sending a null-terminated

string of scan codes as this command's parameter.

• 0xA6 (Check password) - Compares keyboard input with current password.

• 0xA7 (Disable mouse interface) - PS/2 mode only. Similar to "Disable

keyboard interface" (0xAD) command.

• 0xA8 (Enable mouse interface) - PS/2 mode only. Similar to "Enable

keyboard interface" (0xAE) command.

• 0xA9 (Mouse interface test) - Returns 0x00 if okay, 0x01 if Clock line stuck

low, 0x02 if clock line stuck high, 0x03 if data line stuck low, and 0x04 if data

line stuck high.

41

Dynacube Operating System

• 0xAA (Controller self-test) - Returns 0x55 if okay.

• 0xAB (Keyboard interface test) - Returns 0x00 if okay, 0x01 if Clock line

stuck low, 0x02 if clock line stuck high, 0x03 if data line stuck low, and 0x04

if data line stuck high.

• 0xAD (Disable keyboard interface) - Sets bit 4 of command byte and disables

all communication with keyboard.

• 0xAE (Enable keyboard interface) - Clears bit 4 of command byte and re-

enables communication with keyboard.

• 0xAF (Get version)

• 0xC0 (Read input port) - Returns values on input port (see Input Port

definition.)

• 0xC1 (Copy input port LSn) - PS/2 mode only. Copy input port's low nibble to

Status register (see Input Port definition)

• 0xC2 (Copy input port MSn) - PS/2 mode only. Copy input port's high nibble

to Status register (see Input Port definition.)

• 0xD0 (Read output port) - Returns values on output port (see Output Port

definition.)

• 0xD1 (Write output port) - Write parameter to output port (see Output Port

definition.)

• 0xD2 (Write keyboard buffer) - Parameter written to input buffer as if

received from keyboard.

• 0xD3 (Write mouse buffer) - Parameter written to input buffer as if received

from mouse.

• 0xD4 (Write mouse Device) - Sends parameter to the auxiliary PS/2 device.

• 0xE0 (Read test port) - Returns values on test port (see Test Port definition.)

• 0xF0-0xFF (Pulse output port) - Pulses command's lower nibble onto lower

nibble of output port (see Output Port definition.

5.4.3 PS/2 Mouse Driver

Inputs, Resolution, and Scaling:

The standard PS/2 mouse supports the following inputs: X (right/left)

movement, Y (up/down) movement, left button, middle button, and right button. The

42

Dynacube Operating System

mouse reads these inputs at a regular frequency and updates various counters and

flags to reflect movement and button states.

The standard mouse has two counters that keep track of movement: the X-movement

counter and the Y-movement counter. These are 9-bit 2's complement values and

each has an associated overflow flag. Their contents, along with the state of the three

mouse buttons, are sent to the host in the form of a 3-byte movement data packet (as

described in the next section.) The movement counters represent the amount of

movement that has occurred since the last movement data packet was sent to the host.

When the mouse reads its inputs, it records the current state of its buttons, then

checks for movement. If movement has occurred, it increments (for +X or +Y

movement) or decrements (for -X or -Y movement) its X and/or Y movement

counters. If either of the counters has overflowed, it sets the appropriate overflow

flag.

Movement Data Packet:

The standard PS/2 mouse sends movement (and button) information to the

host using the following 3-byte packet:

Y overflow X overflow Y sign bit X sign bit Always 1 Middle Btn Right Btn Left Btn

X Movement
Y Movement

Figure 5.14 Mouse movement byte

The movement counters are 9-bit 2's complement integers, where the most

significant bit appears as a sign bit in Byte 1 of the movement data packet. These

counters are updated when the mouse reads its input and finds movement has

occurred. Their value is the amount of movement that has occurred since the last

movement data packet was sent to the host (i.e., after a packet is sent to the host, the

movement counters are reset.) The range of values that can be expressed by the

movement counters is -255 to +255. If this range is exceeded, the appropriate

overflow bit is set and the counter is not incremented/decremented until it is reset.

43

Dynacube Operating System

Modes of Operation:

Data reporting is handled according to the mode in which the mouse is operating.

There are four standard modes of operation:

• Reset - The mouse enters Reset mode at power-up or after receiving the

"Reset" (0xFF) command.

• Stream - This is the default mode (after Reset finishes executing) and is the

mode in which most software uses the mouse. If the host has previously set

the mouse to Remote mode, it may re-enter Stream mode by sending the "Set

Stream Mode" (0xEA) command to the mouse.

• Remote - Remote mode is useful in some situations and may be entered by

sending the "Set Remote Mode" (0xF0) command to the mouse.

• Wrap - This mode isn't particularly useful except for testing the connection

between the mouse and its host. Wrap mode may be entered by sending the

"Set Wrap Mode" (0xEE) command to the mouse. To exit Wrap mode, the

host must issue the "Reset" (0xFF) command or "Reset Wrap Mode" (0xEC)

command. If the "Reset" (0xFF) command is received, the mouse will enter

Reset mode. If the "Reset Wrap Mode" (0xEC) command is received, the

mouse will enter the mode it was in prior to Wrap Mode.

Modes of operation

Reset Mode:

The mouse enters reset mode at power-on or in response to the "Reset" (0xFF)

command. After entering this mode, the mouse performs a diagnostic self-test referred

to as BAT (Basic Assurance Test) and sets the following default values:

• Sample Rate - 100 samples/sec

• Resolution - 4 counts/mm

• Scaling - 1:1

• Data Reporting Disabled

44

Dynacube Operating System

It then sends a BAT completion code of either 0xAA (BAT successful) or 0xFC

(Error). If the host receives a response other than 0xAA, it may cycle the mouse's

power supply, causing the mouse to reset and re-execute its BAT.

Following the BAT completion code (0xAA or 0xFC), the mouse sends its device ID

of 0x00. This distinguishes it from a keyboard, or a mouse in an extended mode. I

have read documents that say the host is not supposed to transmit any data until it

receives a device ID. However some BIOS's will send the "Reset" (0xFF) command

immediately following the 0xAA received after a power-on reset.

After the mouse has sent its device ID to the host, it will enter Stream Mode. Note

that one of the default values set by the mouse is "Data Reporting Disabled". This

means the mouse will not send any movement data packets to the host until the

"Enable Data Reporting" (0xF4) command is received.

Stream Mode:

In stream mode, the mouse sends movement data when it detects movement or a

change in state of one or more mouse buttons. The maximum rate at which this data

reporting may occur is known as the sample rate. This parameter ranges from 10

samples/sec to 200 samples/sec. Its default value is 100 samples/sec and the host may

change that value by using the "Set Sample Rate" (0xF3) command. Stream mode is

the default mode of operation.

Remote Mode:

In this mode, the mouse reads its inputs and updates its counters/flags at the current

sampling rate, but it only notifies the host of movement (and change in button state)

when that information is requested by the host. The host does this by issuing the

"Read Data" (0xEB) command. After receiving this command, the mouse will send a

movement data packet, and reset its movement counters.

Wrap Mode:

This is an "echoing" mode in which every byte received by the mouse is sent back to

the host. Even if the byte represents a valid command, the mouse will not respond to

45

Dynacube Operating System

that command--it will only echo that byte back to the host. There are two exceptions

to this: the "Reset" (0xFF) command and "Reset Wrap Mode" (0xEC) command. The

mouse treats these as valid commands and does not echo them back to the host.

Command Set:

The following are the only commands that may be sent to the mouse... If the mouse is

in Stream mode, the host should disable data reporting (command 0xF5) before

sending any other commands...

• 0xFF (Reset) - The mouse responds to this command with "acknowledge"

(0xFA) then enters Reset Mode.

• 0xFE (Resend) - The host sends this command whenever it receives invalid

data from the mouse. The mouse responds by resending the last packet it sent

to the host. If the mouse responds to the "Resend" command with another

invalid packet, the host may either issue another "Resend" command, issue an

"Error" command, cycle the mouse's power supply to reset the mouse, or it

may inhibit communication (by bringing the Clock line low). The action

taken depends on the host.

• 0xF6 (Set Defaults) - The mouse responds with "acknowledge" (0xFA) then

loads the following values: Sampling rate = 100, Resolution = 4 counts/mm,

Scaling = 1:1, Disable Data Reporting. The mouse then resets its movement

counters and enters stream mode.

• 0xF5 (Disable Data Reporting) - The mouse responds with "acknowledge"

(0xFA) then disables data reporting and resets its movement counters. This

only effects data reporting in Stream mode and does not disable sampling.

Disabled stream mode functions the same as remote mode.

• 0xF4 (Enable Data Reporting) - The mouse responds with "acknowledge"

(0xFA) then enables data reporting and resets its movement counters. This

command may be issued while the mouse is in Remote Mode (or Stream

mode), but it will only affect data reporting in Stream mode.

• 0xF3 (Set Sample Rate) - The mouse responds with "acknowledge" (0xFA)

then reads one more byte from the host. The mouse saves this byte as the new

sample rate. After receiving the sample rate, the mouse again responds with

46

Dynacube Operating System

"acknowledge" (0xFA) and resets its movement counters. Valid sample rates

are 10, 20, 40, 60, 80, 100, and 200 samples/sec.

• 0xF2 (Get Device ID) - The mouse responds with "acknowledge" (0xFA)

followed by its device ID (0x00 for the standard PS/2 mouse.) The mouse

should also reset its movement counters.

• 0xF0 (Set Remote Mode) - The mouse responds with "acknowledge" (0xFA)

then resets its movement counters and enters remote mode.

• 0xEE (Set Wrap Mode) - The mouse responds with "acknowledge" (0xFA)

then resets its movement counters and enters wrap mode.

• 0xEC (Reset Wrap Mode) - The mouse responds with "acknowledge" (0xFA)

then resets its movement counters and enters the mode it was in prior to wrap

mode (Stream Mode or Remote Mode.)

• 0xEB (Read Data) - The mouse responds with acknowledge (0xFA) then

sends a movement data packet. This is the only way to read data in Remote

Mode. After the data packets have been successfully sent, it resets its

movement counters.

• 0xEA (Set Stream Mode) - The mouse responds with "acknowledge" then

resets its movement counters and enters stream mode.

• 0xE9 (Status Request) - The mouse responds with "acknowledge" then sends

the following 3-byte status packet (then resets its movement counters.):

Always 0 Mode Enable Scaling Always 0 Left Btn Middle Btn Right Btn
Resolution

Sample Rate

Figure 5.15 Mouse Status byte

Right, Middle, Left Btn = 1 if button pressed; 0 if button is not pressed.

Scaling = 1 if scaling is 2:1; 0 if scaling is 1:1. (See commands 0xE7 and 0xE6)

Enable = 1 if data reporting is enabled; 0 if data reporting is disabled. (See commands

0xF5 and 0xF4)

Mode = 1 if Remote Mode is enabled; 0 if Stream mode is enabled. (See commands

0xF0 and 0xEA)

47

Dynacube Operating System

• 0xE8 (Set Resolution) - The mouse responds with acknowledge (0xFA) then

reads one byte from the host and again responds with acknowledge (0xFA)

then resets its movement counters. The byte read from the host determines the

resolution as follows:

Byte Read from Host Resolution

0x00 1 count/mm

0x01 2 count/mm

0x02 4 count/mm

0x03 8 count/mm

Table 5.7 – PS/2 Mouse Movement Resolution

• 0xE7 (Set Scaling 2:1) - The mouse responds with acknowledge (0xFA) then

enables 2:1 scaling (discussed earlier in this document.)

• 0xE6 (Set Scaling 1:1) - The mouse responds with acknowledge (0xFA) then

enables 1:1 scaling (discussed earlier in this document.)

Mouse and Keyboard Driver design and implementation

The keyboard driver initializes the controller so as to use a specific scan set

(XT/AT/PS2) and enables the keyboard IRQ.

The kernel gets all hardware interrupts after it sets the IF flag in the EFLAGS

register. The PIC is responsible for notifying the kernel about the occurrence of

external hardware interrupts. Thus when a key is pressed the keyboard controller

notifies the PIC about the event and it is passed to the kernel as INT 0x21. The

interrupt handler passes the control to the keyboard driver, which reads data from port

0x60 after checking the OBF bit in the 8042’s status register. It then decodes the code

as per the current scan set and forwards the decoded data to the GUI Server for further

processing. This transfer of data is completely transparent to the user and thus giving

the user an illusion of having directly sent the data to the Graphical User Interface.

 The mouse driver has to first initialize the mouse before the mouse can send

data to the system. The reason behind this is that the mouse by default enters the

Reset mode after the system boots up. This causes it to inhibit its data reporting

48

Dynacube Operating System

functionality. Thus the mouse driver does the following to make the mouse report the

data.

• Perform Controller Self Test

• Enable PS/2 I/F

• Send Reset 2 Mouse

• Enable Stream Mode

• Enable Data Reporting

• Enable Mouse IRQ

Once the mouse is initialized it can generate interrupts whenever a mouse

event occurs. The movement bytes are stored in the output buffer of the keyboard

controller’s port 0x60 and the OBF and MOBF bits are set. The mouse driver upon

invocation by the interrupt handler retrieves the data from the 8042’s data port. Once

the movement data has been removed the OBF and MOBF bits are cleared by the

controller.

The x and y movement data is sent as 9-bit 2’s complement form. Thus we use

the following algorithm to convert it to usable form.

1. If the status byte contains the sign bit for x movement

• Then the x data byte is bit-negated and 1 is added to it to the result.

2. If the status byte contains the sign bit for y movement

• Then the y data byte is bit-negated and 1 is added to it to the result.

Table 5.8 – Algorithm for 2’s complement conversion

The mouse driver after retrieving the data from the 8042’s output buffer

converts it to a usable format by using the first byte. The first byte contains

information about which mouse button is held down, and the sign bit for x movement

and y movement. The first byte also contains information about the overflow of x and

y movement. In case of an overflow the mouse driver reinitializes the mouse so as to

smoothen the functioning of the mouse.

Once the mouse driver has a usable movement packet it sends information to

the GUI server about the mouse movement. The GUI Server uses this information to

provide GUI handling like clicking a window or a button on the screen.

49

Dynacube Operating System

5.4.4 SVGA Video driver

 This module acts as an interface between the video controller and the

GUI server. It uses the VESA 2.0 standard for Mode Info Retrieval and Setting. The new

Linear Frame Buffer (LFB) model is used. After setting of the mode, the drawing is done

using double buffering method. It also provides certain primitive graphical library functions.

It also deals with the font map and mouse cursor creation.

VBE functions for Mode Setting and Retrieval

VBE Mode Number

VBE mode numbers are 15 bits wide. It has a specific format. The format of

VBE mode numbers is as follows:

D0-D8= Mode number

D9-D10 = Reserved (must be 0)

D11 = 0 Use current default refresh rate

 = 1 Use user specified CRTC values for refresh rate

D12-13 Reserved for VBE/AF (must be 0)

D14 = 0 Use windowed frame buffer model

 = 1 Use linear/flat frame buffer model

D15 = 0 Clear display memory

 = 1 Don't clear display memory

The mode number that is used by this video driver is 114h. It is the 800 x 600

64K (5:6:5) graphical mode. The D11 bit is not as the default refresh rate is used. The

Linear frame buffer model is used. So the D14 bit is set. The display memory is

cleared and so the D15 bit is not set. So, the mode number is 4114h.

VBE Mode Information Retrieval

The VBE function 01h is used for getting information about the mode. The

input is given in the following registers:

AX - 4F01h Return VBE mode information

CX - Mode number

ES:DI - Pointer to ModeInfoBlock structure (256-byte buffer)

The output is obtained in AX, which has the VBE Return Status. This function

fills the mode information block, ModeInfoBlock, structure with details on the

requested mode.

50

Dynacube Operating System

The important portions of this structure are:

1. ModeAttributes – This is used for checking whether this mode is

supported in hardware. If the D0 bit is set, then the mode is

supported in hardware. If the D7 bit is set, then the linear frame

buffer mode is supported.

2. Xresolution and Yresolution

3. BitsPerPixel

4. PhysBasePtr – This is a 32-bit physical address of the start of frame

buffer memory when the controller is in flat frame buffer memory

mode. If this mode is not available, then this field will be zero. The

driver maps uses direct memory mapping for the LFB address.

VBE Mode Setting

The VBE function 02h is used for setting a particular mode. The input is given

in the following registers:

AX - 4F02h Set VBE Mode

BX - Desired Mode to set (4114h)

ES:DI - Pointer to CRTCInfoBlock structure (0:0)

The output is obtained in the AX register as the VBE Return Status. If the

VBE function completed successfully, 00h is returned in the AH register. Otherwise

the AH register is set to indicate the nature of the failure.

Linear Frame Buffer Model

Once the graphics hardware has been initialized into a mode that supports a

hardware linear frame buffer, and then there is no need to use the previous bank-

switching model. The pixels can be read and written directly through this address. The

steps involved in using this are:

1. Get the mode information for the particular mode and check if there is support

for the linear frame buffer model

2. If so, get that address. The linear frame buffer location is a physical memory

address. It can’t be used directly.

3. So, the particular virtual memory region is directly mapped to the same

physical region.

51

Dynacube Operating System

4. After that, there is no need to access the hardware. The data to be displayed

can be directly written to this address.

Double Buffering

Using the linear frame buffer mode, if the data is directly written to the

specified address on a bit-by-bit basis, then there is a flickering effect. In order to

avoid this, double buffering is used. The data is written first in the secondary buffer

and as and when required it is written to the actual frame address. As a result, the

flickering effect is removed.

Primitive Graphical Library Functions

The driver also provides certain primitive graphics methods. It also has a

default font for the printable characters. The font is maintained as a three-dimensional

array and the character width and height is 5x7. The mouse cursor is also embedded.

The various functions are:

1. initGraphics – This sets the x-resolution and y-resolution, linear frame

buffer address to be used.

2. setPixel – Sets a pixel when given the x and y position. It writes only to the

secondary buffer.

3. getPixel – Gets the pixel at a particular location.

4. getImage – Gets the image that is present in a specified rectangular

region into a buffer.

5. putImage – Sets the specified rectangular region with the data from

the buffer.

6. drawLine – Draws a line from the one point to another.

7. drawRect - Draws a rectangular box given the left point, width and

height.

8. drawCircle – Draws a circle given the center and the radius

52

Dynacube Operating System

5.4.5 Floppy Device Driver

This module deals with interfacing with the floppy disk controller(NEC

µPD765) to provide an interface to the higher-level modules such as the file system

module. The various functions that are to be performed are motor handling, seeking

and recalibration, reading and writing of sectors. It also deals with the floppy interrupt

handling. The floppy runs as a separate process receiving requests from other

processes and performs the requests. It uses DMA for the data transfer. It provides

two system calls for reading and writing sectors.

Basics of Floppy drive

Conventional floppy drives contain the following basic components: A

spindle clamping mechanism to hold the diskette in place as it spins; Either one or

two magnetic read/write heads mounted on a mechanism that moves the heads

radially across the diskette's surface; and A magnetic sensor that detects the

rotational position of the diskette via an index hole on floppy disks.

When the computer system needs to access data on the diskette, the

read/write heads are stepped by signals generated by the computer system's floppy

controller. These steps are along invisible concentric cylinders, which are usually

referred to as tracks. As the computer system's power is first turned on, the

read/write heads of the drive are automatically set to track 0 (the first track and

starting position). In most drives, this starting position is located by means of a

sensor in the drive, which has been adjusted to tell the floppy controller when the

heads have reached the first track. If this sensor is not in proper adjustment, then

this initial starting calibration is also incorrect and the heads are not properly

positioned over track 0. In order to move the heads from this first track to other

tracks, the head pin simply moves in or out one track for each step pulse received

from the computer's floppy controller.

The floppy drive blindly accepts these pulses and assumes that it is

positioned directly over the proper specified track. It has no accurate feedback

mechanism from the diskette concerning whether or not the heads are properly

positioned. This differs significantly from many hard drives employing servo

systems, which constantly monitor exact head position over each track and make

53

Dynacube Operating System

very small and almost instantaneous corrections automatically before performing a

read or write operation. This feedback is generated by positioning signals pre-

recorded on the hard disk's surface. Since common floppy drives are designed

without a positional feedback mechanism, they are referred to as open-loop

whereas these hard drives are referred to as closed-loop. Since common floppy

drives don't have a sophisticated closed loop system, they must be carefully

aligned in order to ensure the very important ability of reliably exchanging data

diskettes with other drives.

It is quite possible for the head pin to become out of alignment in such a

way that the read/write head is only over a portion of a track. This reduces the

strength of the data signal detected by the head and may also cause unwanted

interference between adjacent tracks, or incomplete erasure when data fields are re-

recorded during a disk save. Should the relative alignment of the drive that

recorded the diskette's data and that of the drive reading the same diskette differ

substantially, it will be difficult or impossible to read the recorded data. This

undesirable condition is known as radial misalignment. In addition to radial

misalignment, data errors may also be caused by the heads being rotated slightly

on their axis (azimuth) or the drive's index sensor being out of position.

There are a lot of delays involved in communicating with the controller.

These delays are for a variety of reasons, including the time needed to spin up the

drive motor, and the time taken to move the head to a new position and wait for it

to settle in place. When the drive motor is started up or seek is requested, there will

be a delay until the drive is ready for the next command. An interrupt is issued by

the hardware when it is ready for the next command.

In a single tasked environment, the only option is to have the driver

constantly wait for an interrupt, and then respond to it. However, in a multi-tasked

or multi-threaded environment, it is perfectly acceptable to write a driver which

allows other tasks to be executed while waiting for the interrupt.

When performing a read or write operation, data may be transferred a byte

at a time by reading from or writing to the appropriate port, or a sector/track at a

time through the use of DMA channel 2.

54

Dynacube Operating System

Floppy Controller Specification

 The floppy disk controller (FDC) is capable of managing up to 4 separate

drives and provides a number of registers and commands that may be used to

execute a variety of operations on a specific drive. The base port address used for

the controller is dependant on whether the controller is configured as the primary

or secondary controller. This base address controls the port addresses used for each

of the registers on the controller.

 Registers Of FDC Primary
Address

Secondary
Address

Write (W)
Read (R)

Base address 3f0h 370h
Status register A (PS/2) 3f0h 370h R
Status register B (PS/2) 3f1h 371h R
Digital output register DOR 3f2h 372h W
Main status register 3f4h 374h R
Data rate select register (DSR)(PS/2) 3f4h 374h W
Data register 3f5h 375h R/W
Digital input register DIR (AT) 3f7h 377h R
Configuration control register (AT) 3f7h 377h W

 Table 5.9 – Ports of FDC Registers

Floppy Drive Controller Registers

There are some registers, which are common for all systems and some that are

AT specific, and some are PS/2 Specific.

Digital Output Register DOR

Figure 5.16 – DOR

This register is write only, and controls the drive motors, as well as selecting a

drive and the DMA/IRQ mode, and resetting the controller. MOTD, MOTC, MOTB,

55

Dynacube Operating System

MOTA control the motor for floppy drive D, C, B, A. If it is set, it corresponds to

starting the drive, or else it corresponds to stopping the drive. Setting the DMA bit ,

enables the usage of the DMA and IRQ channel. If not, the polling method of transfer

is used. If the REST bit is set, the controller is enabled, in order to accept and execute

commands. If it is equal to 0, the controller ignores all commands and carries out an

internal reset of all internal registers (except the DOR). The DR1, DR0 bits are used

for Drive select. 00 for drive 0 (A), 01 for drive 1 (B), 10 for drive 2 (C), 11 for drive

3 (D).

Main Status Register

Figure 5.17 – MSR

The MSR is read-only, and contains the controller's status information. This

register can be read whatever else the controller is doing. Bit 7 (MRQ) indicates

whether the controller is ready to receive or send data or commands via the data

register. DIO is used to provide an indication of whether the controller is expecting to

receive data from the CPU, or if it wants to output data to the CPU. If the controller

is set up to use DMA channel 2 to transfer data to or from main memory, the NDMA

bit is not set. If this bit is set, data transfer is carried out exclusively by means of read

or write commands to the data register. In this case, the controller issues a hardware

interrupt every time that it either expects to receive or wants to supply a data byte. Bit

4 indicates whether the controller is busy or not. If the bit is set, the controller is

currently executing a command. Bits 0-3 indicate which (if any) drive is currently in

the process of positioning it's read/write heads, or being recalibrated.

Data Register

The data register is an 8-bit register, which provides indirect access to a stack

of registers. A command can be one to nine bytes in length, and the first byte tells the

controller how many more bytes to expect. The controller sends the command bytes to

56

Dynacube Operating System

the correct registers in it's stack, saving the programmer from the need to use a

separate index register, as is the case in some other devices (e.g. some VGA

registers).

Status Register ST0

Figure 5.18 – ST0

• IC1 and IC0 contain the interrupt code in binary. A value of 00b indicates

normal command termination without errors. 01b indicates abnormal

command termination: the controller began executing the command, but

could not complete it successfully 10b indicates an invalid command: the

command was not started. 11b indicates abnormal termination through

polling

• Seek End(SE) is set if the controller successfully executed a Seek or

Recalibrate command or read or write operation with an implicit seek

• Equipment Check (EC) is set when a Recalibrate command failed

• Not Ready (NR) indicates that the selected drive is not ready. This bit is not

used by all controllers.

• Head Select (HDS) indicates the active drive head: 0 = head 0, 1 = head 1

• Drive Select (DS1, DS0) indicates the currently selected drive in binary:

00b = drive 0, 01b = drive 1, 10b = drive 2 and 11b = drive 3.

Status Register ST1

Figure 5.19 – ST1

57

Dynacube Operating System

• Bit 7 is unused and should be 0

• End of Cylinder (EN). Set if the controller attempted to access a sector

beyond the final sector of the track

• Bit 6 is unused and should be 0

• Data Error (DE). Set if the controller detected a CRC error in either the ID

field or data field of a sector

• Overrun (OR). Set if the controller does not receive CPU or DMA service

within the required time period

• Bit 3 is unused and should be 0

• No Data (ND) becomes set if the controller could not locate the requested

sector while executing a Read Sector command

• Not Writable (NW) becomes set if a the controller attempted to execute a

write operation and the medium in the drive is write protected

• Missing Address Mark. Set if the controller could not locate an ID address

mark or failed to locate a deleted address mark

Status Register ST2

Figure 5.20 – ST2

• Bit 7 is unused and should be 0

• Control Mark (CM). Set if a Read Sector command encounters a deleted

address mark or a Read Deleted Sector command encounters a data address

mark

• Data Error in Data Field (DD). Set if the controller detected a CRC error in

the data field

• Wrong Cylinder (WC). Set when the track address is different from the

address maintained by the controller

• Bit 3 is set to 1 if the controller is a µPD765 and the seek equal condition is

fulfilled, otherwise this bit is always set to 0

58

Dynacube Operating System

• Bit 2 is set to 1 if the controller is a µPD765 and a seek operation failed,

otherwise this bit is always set to 0

• Bad Cylinder (BC). Set if the track address differs from the address

maintained by the controller and equal to FFH

• Missing Data Mark (MD). Set if the controller could not find a valid or

deleted address mark

Status Register ST3

Figure 5.21 – ST3

• Bit 7 is set to 1 if the controller is a µPD765 and a drive error signal is

active, otherwise this bit is always set to 0

• Write Protected (WP). Set if the medium in the drive is write protected

• Bit 5 is is set to 1 if the controller is a µPD765 and the active drive is

ready, otherwise this bit is always set to 1

• TRACK 0 (T0). Set if the head is above track 0 and the TRK0 signal is

active

• Bit 3 is always set to 1, but some controllers may use this bit to indicate

that the drive is double sided

• Head Address (HD). Indicates the active drive head

• Drive Select (DS1, DS0). Indicates the selected drive: 00b = drive 0, 01b =

drive 1, 10b = drive 2 and 11b = drive 3

FDC Command Set

There are a total of 13 commands available on the µPD765 and compatible

FDCs. A further 4 commands are available on the 8207x controllers. The sector

identification consists of the cylinder, head, sector number and sector size. This tells

the controller the position and number of sectors to perform this command on. All

commands and status bytes are transferred via the data register, at port 37fh or 377h.

59

Dynacube Operating System

Before the command can be written or the status byte read, it is necessary to read the

MRQ bit in the main status register. This determines whether the data register is ready

to supply or receive a byte.

Command Phases

Commands are broken down into three logical phases:

1. Command Phase The command, along with all the required parameters are

sent to the controller. The first byte contains the operation code for the

command and is followed by the command parameters, if any. The number

of parameters may vary. However, the controller will know how many

parameters to expect based on the command that was issued. For example,

the Recalibrate command is sent to the controller followed by the drive

number that must be recalibrated.

2. Execution Phase The controller responds to the command and performs

any required action. For example, in response to the Recalibrate command,

the controller steps the head of the specified drive to track 0.

3. Result Phase The controller updates the status registers depending on the

command that was executed. The driver responds by examining these

results and takes any necessary actions. The driver responds by informing

the host software that executed the command of its failure and returns an

appropriate error code or displays an error message. The commands will

return the following information during the result phase:

Figure 5.22 - Commands returned during Result Phase

60

Dynacube Operating System

The following fields may be present in the command that is sent to the

controller:

• M Indicates that the command is a multi-track operation when set

• F When set, indicates that the controller must execute the command in

double density mode. When cleared, the controller executes the command

in single density mode

• S When set, the controller will skip deleted address marks

• HD Indicates the head number, 0 or 1

• DS1, DS0 Specifies drive selection: 00b = drive 0, 01b = drive 1, 10b =

drive 2 and 11b = drive 3

• SRT Step rate

• HUT Head unload time

• HLT Head load time

• ND Non-DMA. When set, indicates that the controller is not operating in

DMA mode.

Read Sector

This command transfers one or more sectors from the medium to main

memory.

Figure 5.23 - Command Phase of Read Sector

61

Dynacube Operating System

• M, F and S should be set to 1

• The FDC numbers the sectors in every track starting at 1.

• The sector size is expressed in multiples of 128 bytes. A value of 0

indicates a sector size of 128 bytes, a value of 1 indicates a sector size of

256 bytes, etc.

• The GAP3 parameter specifies the space between sectors

• The Data Length field should be set to FFH
In the result phase, the controller returns the standard information.

Write Sector

This command will transfer data from main memory to the medium in the

drive.

Figure 5.24: Command Phase of Write Sector

• M and F should be set to 1, S should be set to 0

• The FDC numbers the sectors in every track starting at 1

• The sector size is expressed in multiples of 128 bytes. A value of 0

indicates a sector size of 128 bytes, a value of 1 indicates a sector size

of 256 bytes, etc.

• The GAP3 parameter specifies the space between sectors

• The Data Length field should be set to FFH.

In the result phase, the controller returns the standard information.

62

Dynacube Operating System

Seek

The Seek command moves the read/write head of the selected drive to the

specified cylinder (track). The controller will issue step pulses until the current

cylinder number matches the cylinder number specified in the command parameters.

Figure 5.25 - Command Phase of Seek

The Seek command does not have a result phase. The Sense Interrupt

Status command should be issued to verify the position of the head.

Recalibrate Drive

The Recalibrate command will move the read/write head to cylinder (track) 0

by issuing up to 79 step pulses. The controller will examine the TRK0 signal after

every pulse and terminate the command if this signal is active and set SE in ST0. The

controller will abort the command and set SE and EC in ST0 if the TRK0 signal does

not become active after 79 pulses. The Recalibrate command does not have a result

phase. The Sense Interrupt Status command should be issued to verify the controller

status after the command has been completed.

Figure 5.26 - Command Phase Of Recalibrate Drive

63

Dynacube Operating System

Sense Interrupt

This command is used to check the status of the controller in the result

phase of a command if the controller issued an interrupt. Executing this

command will reset the interrupt signal. Issuing this command without a

pending interrupt will return a value of 80H in ST0, indicating an invalid

command.

Figure 5.27 - Command Phase Of Sense Interrupt

Figure 5.28 - Result for Sense Interrupt

Floppy Driver Interface

System Call Interface

1. read sector(char *buf,int sector) – This reads 512 bytes from the sector specified in

the second argument and places in buf.

2. write sector (char *buf,int sector) – This writes 512 bytes from the buffer to the

This reads 512 bytes from the sector specified in the second argument.

Error Values

1. ERR_SEEK (-1) – This is returned when the seeking was not performed

properly. And this is corrected by doing a recalibrate.

2. ERR_TRANSFER (-2) – This is returned when the reading or writing of

sector was not performed correctly.

3. ERR_STATUS (-3) – This is returned when the FDC is not ready to receive

commands.

4. ERR_RECALIBRATE (-4) - This is returned when the recalibrate command

fails. This can be corrected by performing a reset.

64

Dynacube Operating System

5. ERR_WR_PROTECT (-5) – This is returned when the floppy is write-

protected and the write sector system call is executed.

6. ERR_TIMEOUT (-6) – This is returned whenever the floppy interrupt times

out.

Floppy Server Architecture

The floppy server runs as a separate process with a higher privilege. It keeps

waiting for requests from other processes and services the request.

Flow of Control on a system call

 The sequence of steps that happen are:

1. The process executes a system call provided by the floppy and supplies the

necessary parameters.

2. The system call handler creates a floppy server request corresponding to the

system call and adds that to the sequence of requests to be serviced by floppy

server.

3. The handler then removes the requesting process from ready queue and moves

it to floppy server queue.

4. The floppy server services the request after servicing the other requests in the

queue. It invokes corresponding servicing methods.

5. In this process, the floppy server may request for waiting for the interrupt

(0x26) by executing a system call and it is queued in an interrupt queue.

6. After the interrupt is completed, the kernel removes the floppy server from the

interrupt queue and moves it to the ready queue.

7. The kernel removes the requesting process from floppy server queue to the

ready queue after storing the result in the proc structure.

8. The process now begins its normal execution.

Elements in a Floppy Server request

The elements in a request sent to floppy server are

1. Process Identifier (pid) of the requesting process: this is used by the floppy

server for doing a memory copy on a read or write and on signaling the

65

Dynacube Operating System

completion of the processing so that the kernel can make the requesting

process to begin its normal execution.

2. Operation Code: this identifies the purpose of this request i.e. a read or write

and depending on this the corresponding steps are performed.

3. Buffer Address: This is the address of the buffer of the process that should be

written to or read from.

4. Sector Number: This is the number of the sector that should be written or

read.

Interrupt Handling

The kernel provides certain system calls for processes to wait for interrupts till

a specific time interval. The process gets queued in the interrupt queue until the

interrupt occurs or when the interrupt does not occur till the time is out. The floppy

make use of this function and waits for the Interrupt 0x6 mapped by PIC to interrupt

0x26 for a time of 3 seconds. The kernel uses this waiting time for running other

processes so that the processor utilization is increased. The floppy driver checks for

the return of this system call to determine whether an interrupt has occurred or a time

out has occurred and depending on this it triggers certain actions.

Description of Functions

The functions that are implemented in this module are of the following

categories:

1. Motor Handling Functions: These are the start and stop functions for the

floppy motor. The floppy motor must be started explicitly before any other

command is sent. These functions check for the current state of the motor and

change the motor state as required by sending the value to the DOR port. Start

motor function also waits for the interrupt.

2. Command Send and Result Phase: The sending of floppy commands is done

through the Data Register. There is a function for this which is invoked by all

the other modules. It checks for the MRQ bit in the MSR and outputs the

command when the FDC is ready. If not, it sets the error value to true.

Similarly, there is a funtion for getting the results from the FDC. It also checks

for the MRQ and DIO bit in MSR to obtain the result.

66

Dynacube Operating System

3. Seeking and Recalibrating: When the data is to be read or writing, the seek

function is called for placing the head in the corresponding cylinder and

sector. On error, the seek method calls the recalibrate method.

4. Transfer Method: This is the important method, which is the starting point

when a request to read or write sectors arrives. The steps it does are:

i) Calculate the cylinder, sector and head value of the offset which is to

be read. This is done using the following formula.

Block = Offset >> 9 (29 = 512(sector size))

Cylinder = block / (no_heads * no_sectors)

Head = (block % (no_heads * no_sectors)) / no_sectors

Sector = (block % no_sectors) +1

ii) Setup the DMA using the driver for the corresponding mode

DMA_READ or DMA_WRITE

iii) Output the seek command and check for the results after interrupt

arrives.

iv) Output the Data Transfer command and wait for the interrupt, then

check for the results.

v) If there is no error in any of these command, copy the data to the user

buffer and return.

vi) If there is error, set the reset_needed value to true and try again.

5. Reset Method: This is called whenever the floppy driver has met with an

error and so the FDC is reset. This is done by sending zero and the

DMA_ENABLE value to the DOR register. After this the entire processing

with the FDC is re-begun.

67

Dynacube Operating System

5.5 FILE SYSTEM MODULE

 This module deals with all file management and directory management

function. It takes the raw floppy interface of reading and writing sectors and

implements the FAT12 standard on it. It maintains a descriptor structure for each

opened file indexed by the file handle. This file handle is valid only to that process

that gives security to this interface. It also provides a set of system calls for the

processes. For each file opened, a buffer of 512 bytes is maintained which is

synchronized if needed. It also provides a list of system calls for creation, removal,

retrieval, rename of files and directories.

5.5.1. FAT12 Specification

FAT12 Regions

FATnn – nn is the number of bits in each entry in the FAT structure on the

disk. A FAT file system volume is composed of four basic regions, which are laid out

in this order on the volume:

1. Reserved Region or the boot sector - This is where the (BIOS Parameter

Block) is present.

2. FAT Region - There are two copies of FATs for redundancy and these must

be kept consistent. Each FAT is 9 sectors long and is a singly linked list of

logical cluster numbers. Each entry is 12 bits and 2 entries are packed into 3

bytes.

3. Root Directory Region - This is the base directory in the hierarchy of the file

system. It follows the 2 FATs and occupies a fixed size of 14 sectors. Each

directory entry is 32 bytes.

4. File and Directory Data Region – This starts from the 33rd sector to the end.

All directories except the root directory are simply files with directory entries

and stored in this region. These sectors are linked together by the FAT12

entries to form logical files and directories.

68

Dynacube Operating System

Figure 5.29 - FAT Volume Regions

Data Clusters

Boot Sector
1

FAT1
10

FAT2
19

33

2880

Root

0

Various FAT12 structures

Boot Sector and BPB Structure

 This structure provides various information about the media type and

the file system format, volume label etc.

Name Offset
(byte)

Size
(bytes)

Description

BS_jmpBoot 0 3 Jump instruction to boot code. This field has two
allowed forms:
jmpBoot[0] = 0xEB, jmpBoot[1] = 0x??, jmpBoot[2]
= 0x90 and
jmpBoot[0] = 0xE9, jmpBoot[1] = 0x??, jmpBoot[2]
= 0x??
0x?? indicates that any 8-bit value is allowed in that
byte. This forms a three-byte Intel x86 unconditional
branch (jump) instruction that jumps to the start of
the operating system bootstrap code.

BS_OEMName 3 8 The system that formatted the volume.
BPB_BytsPerSec 11 2 Count of bytes per sector. For FAT12, it is 512.
BPB_SecPerClus 13 1 Number of sectors per allocation unit. This value

must be a power of 2 that is greater than 0. For
FAT12, the typical value is 1.

69

Dynacube Operating System

BPB_RsvdSecCnt 14 2 Number of reserved sectors in the Reserved region of
the volume starting at the first sector of the volume.
This field must not be 0. For FAT12 volumes, this
value should never be anything other than 1.

BPB_NumFATs 16 1 The count of FAT data structures on the volume.
This field should always contain the value 2 for any
FAT volume of any type.

BPB_RootEntCnt 17 2 For FAT12 volumes, this field contains the count of
32-byte directory entries in the root directory. This
value is 224.

BPB_TotSec16 19 2 This field is the old 16-bit total count of sectors on
the volume. This count includes the count of all
sectors in all four regions of the volume. For FAT12
volumes, this value is 2880.

BPB_Media 21 1 0xF8 is the standard value for “fixed” (non-
removable) media. For removable media, 0xF0 is
frequently used. The legal values for this field are
0xF0, 0xF8, 0xF9, 0xFA, 0xFB, 0xFC, 0xFD, 0xFE,
and 0xFF. The only other important point is that
whatever value is put in here must also be put in the
low byte of the FAT[0] entry. For FAT12 volumes,
this value is 0xF0

BPB_FATSz16 22 2 This field is the FAT12 16-bit count of sectors
occupied by ONE FAT. For FAT12 volumes, this
value is 9.

BPB_SecPerTrk 24 2 Sectors per track for interrupt 0x13. For FAT12
volumes, this value is 18.

BPB_NumHeads 26 2 Number of heads for interrupt 0x13. For example, on
a 1.44 MB 3.5-inch floppy drive this value is 2.

BPB_HiddSec 28 4 Count of hidden sectors preceding the partition that
contains this FAT volume.

BPB_TotSec32 32 4 This field is the new 32-bit total count of sectors on
the volume. For FAT12 volumes, the value is 0.

BS_DrvNum 36 1 Int 0x13 drive number (e.g. 0x80).
BS_Reserved1 37 1 Reserved (used by Windows NT). Code that

formats FAT volumes should always set this byte
to 0.

BS_BootSig 38 1 Extended boot signature (0x29). This is a signature
byte that indicates that the following three fields in
the boot sector are present.

BS_VolID 39 4 Volume serial number. This field, together with
BS_VolLab, supports volume tracking on
removable media. These values allow FAT file
system drivers to detect that the wrong disk is
inserted in a removable drive. This ID is usually
generated by simply combining the current date
and time into a 32-bit value.

70

Dynacube Operating System

BS_VolLab 43 11 Volume label. This field matches the 11-byte
volume label recorded in the root directory.
NOTE: FAT file system drivers should make sure
that they update this field when the volume label
file in the root directory has its name changed or
created. The setting for this field when there is no
volume label is the string “NO NAME ”.

BS_FilSysType 54 8 The string “FAT12 ”.

Table 5.10 -Boot Sector and BPB Structure

FAT Data Structure

The next data structure that is important is the FAT itself. This data structure

does is define a singly linked list of the “extents” (clusters) of a file. The FAT maps

the data region of the volume by cluster number. The first data cluster is cluster 2.

There are 2 FAT structures continuously. This structure is composed of 12-bit FAT12

entries and 2 entries are packed in 3 bytes.

FAT12 Entry Values

FAT12 entry value indicates the next cluster in the cluster chain. The various

FAT12 entry values are :

• 0 Unused cluster
• 0xFF0-0xFF6 Reserved cluster
• 0xFF7 Bad cluster
• 0xFF8-0xFFF End Of Clusterchain mark (EOC) <EOF>
• Other Next cluster in file

The list of free clusters in the FAT is nothing more than the list of all clusters

that contain the value 0 in their FAT cluster entry. Any cluster that contains the “BAD

CLUSTER” value in its FAT entry is a cluster that should not be placed on the free

list because it is prone to disk errors. Reserved clusters can be used by the operating

system.

FAT12 Entry Packing

The three bytes from 3x to 3x + 2 contains the fat12 entries of 2x and 2x + 1.

71

Dynacube Operating System

Byte 3x - 8 least significant bits (LSB) of entry 2x
Byte 3x+1 - 4 LSB are the 4 most significant bits (MSB) of entry 2x

 4 MSB are the 4 LSB of entry 2x+1
Byte 3x+2 - 8 MSB of entry 2x+1

Entry 2x +1

Entry 2x
Byte 3x

Byte 3x + 1

Byte 3x + 2

Figure 5.30 - FAT12 Entry Packing

 In order to get a fat12 entry, the following steps must be done.

1. Determine byte offset in the FAT using the formula

 FatIndex = (LogicalCluster * 3)/2

2. Determine if an Even or Odd logical cluster.

3. If even , 4 LSB of FAT[FatIndex + 1] forms the 4 MSB of entry and

FAT[FatIndex] forms the 8 LSB of entry.

4. If odd, FAT[FatIndex + 1] forms the 8 MSB of entry and 4 LSB of

FAT[FatIndex] forms the 4 LSB of entry.

In order to set a fat12 entry, the following steps must be done.

1. Determine byte offset in the FAT using the formula

 FatIndex = (LogicalCluster * 3)/2

2. Determine if an Even or Odd logical cluster.

3. If even, 4 LSB of FAT [FatIndex + 1] is set to the 4 MSB of entry and FAT

[FatIndex] is set to the 8 LSB of entry.

4. If odd, FAT [FatIndex + 1] is set to the 8 MSB of entry and 4 LSB of FAT

[FatIndex] is set to the 4 LSB of entry.

Cluster Chaining

The way the data of a file is associated with the file is as follows. In the

directory entry, the cluster number of the first cluster of the file is recorded. The first

cluster (extent) of the file is the data associated with this first cluster number, and the

location of that data on the volume is computed from the cluster number using the

formula:

 Cluster = Sector – ReservedSectors – RootSectors – (NoOfFats * SectorsPerFat) + 2

72

Dynacube Operating System

The next cluster is found by getting the FAT12 entry from the FAT structure.

If the next cluster has the EOC mark, the chaining sequence is complete. The physical

location of the cluster is found using the formula

Sector = Cluster + ReservedSectors + RootSectors + (NoOfFats * SectorsPerFat) - 2

122

123

125

EOC

156 154 153

FAT1

120

121

122

123

124

125

FAT TableSectors in Disk

Figure 5.31 – Cluster Chaining

Example of Chaining

Suppose the starting sector is 153. The next sector can be calculated from the

FAT. The cluster is 153 - 1 - 18 - 14 - 2 = 122. The fat value on 122nd cluster is 123.

So, the next sector is 123 + 1 + 18 + 14 + 2 = 154. Similarly, this process is continued

until EOC mark is found in 125th cluster.

FAT Directory Structure

A FAT directory is nothing but a “file” composed of a linear list of 32-byte

structures. The only special directory, which must always be present, is the root

directory. This is present following the two FAT tables.

Name Offset

(byte)
Size
(bytes
)

Description

73

Dynacube Operating System

DIR_Name 0 11 Short name.
DIR_Attr 11 1 The upper two bits of the attribute byte are

reserved and should always be set to 0
when a file is created.

DIR_NTRes 12 1 Reserved for use by Windows NT. Set
value to 0 when a file is created and never
modify or look at it after that.

DIR_CrtTimeTenth 13 1 Millisecond stamp at file creation time.
This field actually contains a count of
tenths of a second. The granularity of the
seconds part of DIR_CrtTime is 2 seconds
so this field is a count of tenths of a second
and its valid value range is 0-199 inclusive.

DIR_CrtTime 14 2 Time file was created.
DIR_CrtDate 16 2 Date file was created.
DIR_LstAccDate 18 2 Last access date. Note that there is no last

access time, only a date. This is the date of
last read or write. In the case of a write, this
should be set to the same date as
DIR_WrtDate.

DIR_FstClusHI 20 2 High word of this entry’s first cluster
number (always 0 for a FAT12 or FAT16
volume).

DIR_WrtTime 22 2 Time of last write. Note that file creation is
considered a write.

DIR_WrtDate 24 2 Date of last write. Note that file creation is
considered a write.

DIR_FstClusLO 26 2 Low word of this entry’s first cluster
number.

DIR_FileSize 28 4 32-bit DWORD holding this file’s size in
bytes.

Table 5.11 - FAT 32 Byte Directory Entry Structure

DIR_Name[0]

 This bye carries a specific

If DIR_Name[0] == 0xE5, then the directory entry is free (there is no file or

directory name in this entry).

If DIR_Name[0] == 0x00, then the directory entry is free (same as for 0xE5),

and there are no allocated directory entries after this one (all of the DIR_Name[0]

bytes in all of the entries after this one are also set to 0).

If DIR_Name[0] == 0x05, then the actual file name character for this byte is

0xE5. 0xE5 is actually a valid KANJI lead byte value for the character set used in

Japan. The special 0x05 value is used so that this special file name case for Japan can

be handled properly and not cause FAT file system code to think that the entry is free.

74

Dynacube Operating System

The following characters are not legal in any bytes of DIR_Name: Values less

than 0x20 except for the special case of 0x05 in DIR_Name[0] described above and

0x22, 0x2A, 0x2B, 0x2C, 0x2E, 0x2F, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, 0x3F, 0x5B,

0x5C, 0x5D, and 0x7C.

DIR_Attr specifies attributes of the file:

 ATTR_READ_ONLY Indicates that writes to the file should fail.

 ATTR_HIDDEN Indicates that normal directory listings should not

show this file.

 ATTR_SYSTEM Indicates that this is an operating system file.

 ATTR_VOLUME_ID There should only be one “file” on the volume that

has this attribute set, and that file must be in the root

directory. This name of this file is actually the label

for the volume. DIR_FstClusHI and

DIR_FstClusLO must always be 0 for the volume

label (no data clusters are allocated to the volume

label file).

ATTR_DIRECTORY Indicates that this file is actually a container for

other files.

ATTR_ARCHIVE This attribute supports backup utilities. The FAT

file system driver sets this bit when a file is created,

renamed, or written to.

ATTR_LONG_NAME ATTR_READ_ONLY | ATTR_HIDDEN |

ATTR_SYSTEM | ATTR_VOLUME_ID. This

attribute bit combination indicates that the “file” is

actually part of the long name entry for some other

file.

Date and Time Formats

Date Format. A FAT directory entry date stamp is a 16-bit field that is basically a

date relative to the MS-DOS epoch of 01/01/1980. Here is the format (bit 0 is the LSB

of the 16-bit word, bit 15 is the MSB of the 16-bit word):

Bits 0–4: Day of month, valid value range 1-31 inclusive.

Bits 5–8: Month of year, 1 = January, valid value range 1–12 inclusive.

75

Dynacube Operating System

Bits 9–15: Count of years from 1980, valid value range 0–127 inclusive

(1980–2107).

Time Format. A FAT directory entry time stamp is a 16-bit field that has a

granularity of 2 seconds. Here is the format (bit 0 is the LSB of the 16-bit word, bit 15

is the MSB of the 16-bit word).

Bits 0–4: 2-second count, valid value range 0–29 inclusive (0 – 58 seconds).

Bits 5–10: Minutes, valid value range 0–59 inclusive.

Bits 11–15: Hours, valid value range 0–23 inclusive.

The valid time range is from Midnight 00:00:00 to 23:59:58.

Long File Name Standard

 As the original FAT12 is confined to 8.3 names i.e. names of length 8 bytes

and extension of 3 bytes, this standard was proposed. It has backward compatibility

with the original FAT12. The 8.3 names and long names share the same namespace.

Both a long and a short name will always be created for a file.

 FAT Long Directory Entry Structure

A long directory entry is just a regular directory entry in which the attribute

field has a value of ATTR_LONG_NAME.

Name Offset

(byte)
Size
(bytes)

Description

LDIR_Ord 0 1 The order of this entry in the sequence of long
dir entries associated with the short dir entry at
the end of the long dir set.

If masked with 0x40
(LAST_LONG_ENTRY), this indicates the
entry is the last long dir entry in a set of long
dir entries. All valid sets of long dir entries
must begin with an entry having this mask.

LDIR_Name1 1 10 Characters 1-5 of the long-name sub-
component in this dir entry.

LDIR_Attr 11 1 Attributes - must be ATTR_LONG_NAME
LDIR_Type 12 1 If zero, indicates a directory entry that is a sub-

component of a long name. NOTE: Other
values reserved for future extensions.

Non-zero implies other dirent types.

LDIR_Chksum 13 1 Checksum of name in the short dir entry at the
end of the long dir set.

76

Dynacube Operating System

LDIR_Name2 14 12 Characters 6-11 of the long-name sub-
component in this dir entry.

LDIR_FstClusLO 26 2 Must be ZERO. This is an artifact of the FAT
"first cluster" and must be zero for
compatibility with existing disk utilities. It's
meaningless in the context of a long dir entry.

LDIR_Name3 28 4 Characters 12-13 of the long-name sub-
component in this dir entry.

Table 5.12 - FAT Long Directory Entry Structure

Organization and Association of Short & Long Directory Entries

A set of long entries is always associated with a short entry that they always

immediately precede. Long entries are paired with short entries for one reason: only

short directory entries are visible to previous versions of FAT12 drivers. A long entry

never legally exists all by itself. If long entries are found without being paired with a

valid short entry, they are termed orphans. The following figure depicts a set of n

long directory entries associated with it's single short entry.

Long entries always immediately precede and are physically contiguous with,

the short entry they are associated with. The file system makes a few other checks to

ensure that a set of long entries is actually associated with a short entry.

Entry Ordinal
Nth Long entry LAST_LONG_ENTRY (0x40) | N
… Additional Long Entries …
1st Long entry 1
Short Entry Associated With Preceding

Long Entries
(not applicable)

Table 5.13 - Sequence Of Long Directory Entries

First, every member of a set of long entries is uniquely numbered and the last

member of the set is or'd with a flag indicating that it is, in fact, the last member of the

set. The LDIR_Ord field is used to make this determination. The first member of a

set has an LDIR_Ord value of one. The nth long member of the set has a value of (n

OR LAST_LONG_ENTRY). Note that the LDIR_Ord field cannot have values of

0xE5 or 0x00. Values for LDIR_Ord must run from 1 to (n OR

LAST_LONG_ENTRY). If they do not, the long entries are "damaged" and are

treated as orphans by the file system.

77

Dynacube Operating System

Second, an 8-bit checksum is computed on the name contained in the short

directory entry at the time the short and long directory entries are created. All 11

characters of the name in the short entry are used in the checksum calculation. The

check sum is placed in every long entry. If any of the check sums in the set of long

entries do not agree with the computed checksum of the name contained in the short

entry, then the long entries are treated as orphans. The algorithm, implemented in C,

for computing the checksum is:

unsigned char ChkSum (unsigned char *pFcbName)

 {
 short FcbNameLen;
 unsigned char Sum;
 Sum = 0;
 for (FcbNameLen=11; FcbNameLen!=0; FcbNameLen--) {

 Sum = ((Sum & 1) ? 0x80 : 0) + (Sum >> 1) + *pFcbName++;
 }
 return (Sum);

}

As a consequence of this pairing, the short directory entry serves as the

structure that contains fields like: last access date, creation time, creation date, first

cluster, and size. It also holds a name that is visible on previous versions of FAT12.

Names are also NUL terminated and padded with 0xFFFF characters in order to

detect corruption of long name fields by errant disk utilities. A name that fits exactly

in a n long directory entries (i.e. is an integer multiple of 13) is not NUL terminated

and not padded with 0xFFFFs.

The Basis-Name Generation Algorithm

The basis-name generation algorithm is outlined below. This is a sample algorithm

and serves to illustrate how short names can be auto-generated from long names. An

implementation should follow this basic sequence of steps.

1. The UNICODE name passed to the file system is converted to upper case.

2. Strip all leading and embedded spaces from the long name.

3. Strip all leading periods from the long name.

4. While not at end of the long name and char is not a period and total chars copied <

8 Copy characters into primary portion of the basis name.

78

Dynacube Operating System

5. Insert a dot at the end of the primary components of the basis-name iff the basis

name has an extension after the last period in the name.

6. Scan for the last embedded period in the long name.

If the last embedded period was found

 While not at end of the long name and total chars copied < 3

 Copy characters into extension portion of the basis name.

The Numeric-Tail Generation Algorithm

 If the long name fits within the 8.3 naming conventions and the basis-name

does not collide with any existing short name, the short name is only the basis-name

without the numeric tail. Else, Insert a numeric-tail "~n" to the end of the primary

name such that the value of the "~n" is chosen so that the name thus formed does not

collide with any existing short name and that the primary name does not exceed eight

characters in length.

5.5.2. File System Interface

System Call Interface

The various system calls provided for file system are :

1. open(char *fname,int mode) – This takes the filename and the mode to be opened

(READ-ONLY or READ-WRITE) as the parameter and returns a file handle or an

error.

2. close(int fd_in) – This takes the file handle as input and closes the file and

performs the synchronization operation.

3. read(int fd_in,char *buf, int length) – This reads ‘length’ bytes from the file with

handle fd_in and places in buf.

4. write(int fd_in,char *buf,int length) – This writes ‘length’ bytes from the buffer to

the file opened with fd_in as handle.

5. creat(char *fname) – This creates a new file in the root or the sub directory

specified.

6. opendir(char *name) – This is used to open directories but there is only READ

mode.

7. createdir(char *name) – This creates a new directory in a sub directory or the root

directory.

8.closedir(int dd_in) – This closes the directory opened with handle dd_in.

79

Dynacube Operating System

9.readdir(int dd_in,DIRENT *dir) – This reads the next directory entry from the

directory with handle dd_in.

10. remove(char *name) – This removes the file, if it exists.

11.rename(char *old_name,char *new_name) – This renames the file with the new

name.

Another system call, which is used by the kernel itself for creating processes is

12. Load (char *name,int addr[]) – This loads the specified binary file into the

memory location addr.

Modes of Opening

1. O_RDONLY – The file is opened only for reading. The system call write is not

supported for this and no synchronization is done on close.

2. O_RDWR - Both read and write calls are supoorted. Synchronisation of the block

is done on close.

Dirent structure

This structure is returned when the readdir system call is executed on the

opened directory. By using this, all the present files and directories can be read. It

parses through the directory and returns the long name of the file or directory. It also

returns various other information about the file. They are :

1.Long Name of the file or directory (upto 255 characters in length)

2. Attribute – Directory or file, Hidden, System

3. Creation Date and Time

4. Accessed Date

5. Modified Date and Time

6. First cluster

7. Size of the file or directory

Error values

The various error values returned by the File System are

1. E_DISK (-1) – This is returned when there is any problem in reading or writing

the floppy.

2. E_FS_NEXISTS (-2) – This is returned when a file or directory to be opened or

removed or renamed does not exist.

80

Dynacube Operating System

3. E_FS_EXISTS (-3) – This is returned when a file or directory to be created or

renamed as exists

4. E_FS_FNAME (-4) - This is returned when the file name does not conform to the

standards.

5. E_FS_SPACE (-5) - This is returned when there is no space available for creation

of a file or directory.

6. E_FS_BUSY (-6) - This is returned when there are maximum number of files or

directories that are opened.

5.5.3 File System Server Architecture

The file system server runs as a separate process with a higher privilege. It

keeps waiting for requests from other processes and services the request.

Flow of Control on a system call

 The sequence of steps that happen are:

1. The process executes a system call provided by the File System and supplies

the necessary parameters.

2. The system call handler creates a FS request corresponding to the system

call and adds that to the sequence of requests to be serviced by FS.

3. The handler then removes the requesting process from ready queue and

moves it to FS queue.

4. The FS services the request after servicing the other requests in the queue. It

invokes corresponding servicing methods.

5. In this process, the FS may request for reading or writing of a sector to the

floppy server by executing a system call.

6. After the request has been completed, the FS sends the result and process

completion interrupt to kernel.

7. The kernel removes the requesting process from FS queue to the ready

queue after storing the result in the proc structure.

8. The process now begins its normal execution.

Elements in a FS request

The elements in a request sent to FS are

81

Dynacube Operating System

1.Process Identifier (pid) of the requesting process: this is used by the FS for

doing a memory copy on a read or write and on signaling the completion of the

processing so that the kernel can make the requesting process to begin its normal

execution.

2. Type of request: this identifies the purpose of this request and the data present

in the next part of the request.

3. Body of request: Depending on the type of request field, it contains the

necessary parameters of the request. This is present as a union of structures.

Descriptor and Buffer Management

The maintenance of a session across multiple reads and writes is done using

file handlers and mapping a descriptor to it. A buffer of size 512 bytes is allocated for

each opened file and directory. The descriptor array is indexed using the file handle

and it contains the needed information about that opened file or directory and also

holds the buffer pointer.

Elements of Descriptor

1. Available bit: This is used as an indication of whether the descriptor is in use

or not.

2. Name of the opened file or directory

3. Mode in which the file is opened (Read-Only or Read-Write)

4. Sector offset - The current sector of the opened file or directory which is

being written or read.

5. Offset into the current sector – This is the current byte offset being written or

read.

6. Buffer pointer - A pointer to the allocated file buffer.

7. Length – The size in bytes of the opened file or directory. This is used as an

indication of reaching EOF. It is also used for holding the modified size of

file.

8. Total Offset – This is the byte count starting from the beginning of the file.

This is also used in finding the EOF of the opened file or directory.

82

Dynacube Operating System

9. Directory Entry – This is the initial directory entry of the opened file or

directory. This is later modified and written in the corresponding location

indicated by the next two fields.

10. Sector of directory entry – The sector in which the directory entry for this

opened file or directory is present. This is used for writing the last accessed

date, the modified date and time, and the changed file size on close of this file

or directory

11. Offset into the sector of directory entry

The descriptor is maintained independently for each process. As a result, each

process has its own handler space and it can’t access the files opened by the other

processes. This is guaranteed as the kernel itself gives the process id of the requesting

process and so it is trustworthy. The handle returned is maintained unique within a

process by using the available bit in the descriptor structure. The descriptor is also

used for maintaining the state of the session. It also puts a threshold on the number of

opened files or directories so that a process can’t flood the FS with multiple requests.

When the maximum number is reached, an error with value E_FS_BUSY is returned.

Buffer Management

The buffer holds the data temporarily and so it reduces the accessing of the

disk. It extremely optimizes the disk access as most requests are of very small sizes.

The way in which the buffer is used is as follows :

1. On opening a file or directory, the buffer is filled with the first sector, if

present and the sector and offset fields are updated.

2. When a read request is performed and the requested data limit is within the

buffer itself, then the data is returned and the offset is updated accordingly.

3. If the data limit is beyond the buffer, the data present in the buffer is first

copied and then the next sector of the file is read into the buffer and the

remaining of the data is copied and returned to the process.

4. A write request also works in a similar way and a write back is done whenever

the file buffer is updated with the next sector or when the file is closed.

83

Dynacube Operating System

Request Handler Methods

The File System server waits for requests and dispatches it according to the

type to the respective request handling methods. The various request handling

methods are described here.

Creating a file

The various steps for creating a file are :

1. Extract the parent directory and the file name. Check whether the parent

directory exists, if not return error.

2. Check whether a file with the new file name is present. If so, return error.

3. Check whether the new file, follows the naming conventions of FAT12. If not,

return an error.

4. Get a location in the directory where free entry can be created.

5. Using the long name convention, form a short name if needed.

6. Construct the short directory entry with size and first cluster fields as 0.

Compute the checksum of the entire short name.

7. Form the long name directory entry sequences and add the checksum field.

8. Write all the long and short directory entries in the correct sequence to the

obtained free entry location in the parent entry.

Creating a directory

Creating a directory also involves a few additional steps to be taken care of.

They are:

1. When a directory is created, DIR_Attr field of the directory entry is set to the

value ATTR_DIRECTORY, and the DIR_FileSize is set to 0.

2. One cluster is allocated to the directory and the DIR_FstClusLO and

DIR_FstClusHI is set to the corresponding cluster number and place an EOC

mark in that clusters entry in the FAT.

3. Initialize all bytes of that cluster to 0.

4. Create two special entries in the first two 32-byte directory entries of the

directory. (The first two 32 byte entries in the data region of the cluster). The

first directory entry has DIR_Name set to: “.” The second has DIR_Name set

84

Dynacube Operating System

to”..”. These are called the dot and dotdot entries. The dot entry is a directory

that points to itself. The dotdot entry points to the starting cluster of the parent

of this directory (which is 0 if this directories parent is the root directory). The

DIR_FileSize field on both entries is set to 0, and all of the date and time fields

in both of these entries are set to the same values as they were in the directory

entry for the directory that was just created. The DIR_FstClusLO and

DIR_FstClusHI for the dot entry (the first entry) are set to the same values in

those fields for the directories’ directory entry. The DIR_FstClusLO and

DIR_FstClusHI for the dotdot entry (the second entry) are set to the first cluster

number of the directory in which this directory was created.

Opening a file or a directory

The various steps performed for handling this request are:

1. Obtain a free descriptor for the corresponding process.

2. Check if the file or directory exists in the corresponding parent directory.

3. Update the sector, offset of the directory entry and the directory entry fields in

the descriptor.

4. Update the file length, total offset, current sector and offset accordingly.

5. Read the first sector and place it in the buffer for that descriptor.

6. Return the index of the allocated descriptor as handle.

Reading or Writing to a file

The sequence of steps for handling read and write are:

1. Check whether a file is opened with the handle and the mode is set

appropriately. If not, return an error.

2. Check if the data in buffer is enough for satisfying this request. If so, copy the

requested bytes or write the requested bytes, update the offset in the descriptor

and return.

3. If not, first copy the available data or write the available data. Then, write

back the data in the buffer to the corresponding sector. Then, obtain the next

sector in the cluster chain, and complete the request.

85

Dynacube Operating System

4. For read call, if the next sector is EOF, then return the already read number of

bytes.

5. For write call, if the next sector is EOF, then allocate a new sector and write

an EOC mark in it’s fat entry, update the previous cluster’s fat entry to point to

this cluster. If there is no previous entry, make this allocated cluster as the first

cluster in the root directory entry.

6. Repeat the steps from 2 until the requested number of bytes is read or written

to.

Closing a file

Depending on the mode in which the file was opened certain steps must be

performed.

1. Check whether a file is opened with the handle and the mode is set

appropriately. If not, return an error.

2. If the file was opened for Read-Write, then write back the data in buffer to

disk. Change the modified date and time to the current date and time.

3. Change the last accessed date in the directory entry.

4. Write the directory entry to the parent directory’s sector at the offset stored in

the descriptor.

Removing a file

1. Check whether a file is present in the corresponding directory. If not, return

error.

2. Set the long name entries in the parent directory to deleted entries by setting

the first byte to 0xE5 by going backward till the ordinal field has the 0x40

(LAST_LONG_ENTRY).

3. Set the short directory entry’s first byte to 0xE5.

4. Get the first cluster in the short entry and by traversing through the FAT table

update all cluster entries in the FAT to unused.

86

Dynacube Operating System

Renaming a file

1. Check whether a old file is present in the corresponding directory. If not,

return error.

2. Check whether a file with the new name is present in the corresponding

directory. If so, return error.

3. Set the long name entries and short directory entries in the parent directory to

deleted entries by setting the first byte to 0xE5.

4. Form short and long entries for the new name, the other fields of date and

time, file size are set as in the old entry.

5. The first cluster values are also set as in the old file. This is done so that the

contents of the old file are retained.

Loading a program

1. Check whether the binary file to be loaded is present. If not, return error.

2. Open the file by using the name in the request.

3. While there are more bytes to read, read it as chunks of 512 bytes and store it

in the address given in the request.

4. Close the opened file.

Formatting or FAT Volume Initialization

1. Initialize the values for jump boot and System Name. Set the values for bytes

per sector to 512, sectors per cluster to 1, head count to 2, total sectors to

2880, sectors per track to 18.

2. Initialize the values for fat count to 2, max root entries to 224, sectors per fat

to 9, media descriptor to 0xF0, extended boot signature to 0x29.

3. Generate volume serial number from the date and set the volume label.

4. Set the first fat entry to 0xFF0 (media type) and the upper byte to EOC

(0xFFF). Set the rest of the Fat entries in both FATs to 0.

5. Create a volume label directory entry and set it as the first entry in Root sector.

Clear all the other entries in Root sector.

87

Dynacube Operating System

5.5.4 Implementation of File System

 The FAT12 specification was implemented along with the long name

standard. The file system server was implemented. The system call interface as

designed was implemented.

Stages in Implementation

The implementation of the file system was done in several stages:

1. FS Server: Methods for starting file server, adding requests, system call

handling functions that forms the requests, the run server loop that dispatches

requests.

2. Primitive functions: Various functions for reading and writing FAT entries,

boot sector, long directory entries, short directory entries. All these functions

convert the data types of int, long, date and time into the little endian format

and generate buffers for writing to sectors.

3. Cluster Chaining functions: To implement the cluster chaining, some base

functions were first coded. They are:

i) Get Next Sector: This function reads the fat entry for the given

sector and checks if it is EOC and if not, calculates the sector

number from the cluster and returns. This function is used for

reading, writing a file.

ii) Remove Chain: This function sets the fat entries of a chain to

unused. It reads the fat entry of the first sector and passes through

the chain setting all entries to unused.

4. Long Name Standard: The functions that were implemented are:

i) Get Long Name: This function returns the long name when given

the index into the short directory entry. It checks for all the rules of

a long name namely the checksum, ordinal value. This is invoked

for searching through a directory.

ii) Remove Long Name: This function removes the long name entry

sequences given the short directory entry index. This is invoked

when removing a file or a directory.

88

Dynacube Operating System

iii) Create Long Name: This function generates the set of long name

entries when given the short and the long name.

iv) Generate Short Name: This is used for the base name and the

numerical tail generation for a long name given. This function is

used when a file or directory is created.

5. Identifying free entries and sectors: The get free sector function is used for

finding free sectors by checking for unused fat entries in FAT and the get free

entry gives the index into a directory sector to find the free entry.

6. Descriptor Handling: This set of functions is used for creating, removing and

accessing descriptors. This is called by the open, read, write and close calls for

files and directories.

7. Request Handler Methods: These functions perform the specific operations

for a request. These are called by the file server loop. After performing the

necessary functions, it returns the result through the file server to the kernel.

8. Synchronization Methods: The file buffer needs to be synchronized as it

employs a write back cache scheme. The synchronization is done when a file

is closed or a process exits or when the system shuts down or restarts. The file

system has functions for syncing on a file basis, or process basis or for all

opened files.

89

Dynacube Operating System

5.6. DSERVER (GUI) MODULE DESIGN

This module deals with the creation and management of windows and

components. It provides an easy-to-use model using which various applications can be

designed. Its architecture is based on the client-server model wherein the client sends

requests for the GUI-based functions and the GUI server performs the operations. The

model uses the inter-process communication model provided by the kernel. The GUI

uses the functions of Video driver for displaying the GUI elements. The client is

prevented from accessing the video driver directly and the GUI server acts as a bridge

between the client and the video driver.

5.6.1 Conceptual Design

The GUI server is organized into the following sub-modules in order to

provide the functions required by a client. The sub-modules are:

GUI Server and the Request Handling

The GUI server runs as a separate process with a high priority level. It

receives messages from the various client processes and also the device drivers like

mouse when a click is occurred and the keyboard when a key is typed. The GUI

server handles the message depending upon the type present in the message and

performs the corresponding functions. The sequence of steps that happen are:

1. The client sends requests to the server through messages.

2. The client is removed from the ready queue and queued in a special queue

called as GUI queue by the kernel.

3. The server waits for messages from the client or the drivers using the recv

system call of the process management module and handles it.

4. After performing the operations, it indicates to the kernel that the

processing is over through an system call.

5. The kernel removes the respective process from the GUI queue into the

ready queue.

Desktop and Taskbar Management

The desktop provides shortcuts for commonly used applications like

DynaPlorer, DynaPad and the DynaCalc. The taskbar holds the currently visible

90

Dynacube Operating System

windows and it differentiates between the active and the inactive window. By clicking

on this task link, the window toggles from maximized/restored state to minimized

state. It also displays the time and date. On clicking this clock, a process that displays

a window, which is used for setting the time, is invoked. This module also handles the

start menu, which is displayed on a mouse click. The start menu holds links to other

programs, which are dynamically loaded using the create system call.

Window and Component Management

The GUI provides an interface for the client to create, destroy, hide, show,

disable and enable the windows and the components. Window is a container which

holds the various components. The window is composed of the tittle bar and the

buttons for minimizing, maximizing or restore and the close button. The next part in

the window is the menu that is handled by a separate module. Next is the region

where the client can create any components of choice.

The various components that can be created are:

Label: It is a component that is used for displaying text messages.

Button: It is a component that is used for invoking certain actions. The GUI

server handles the clicking of the button and sends a message to the client process that

can perform the actions accordingly.

Text: It is a component that is used for getting a line of text as input. The GUI

server handles the clicking of this text by making this the focus component after

which any key typed is displayed. It also provides functions for cutting, copying and

pasting and navigation on specific keys. It provides certain messages for getting,

setting the text.

TextArea: It is also an area for receiving input across multiple rows. It also

provides the same function of editing and navigating of the displayed text.

Folderview: It is a component that provides the display of folder and file

icons and handles the click event on these icons and sends a message to the client

process that performs the corresponding operations. DynaPlorer uses this for

providing a file and directory browser.

Dialog: This is similar to a window but it is embedded within a window. The

dialog can also contain the other components. It is used for displaying information or

getting information needed by the parent window. During the time in which the dialog

is active, the parent window is inactive.

91

Dynacube Operating System

All these components can over-ride the default operation by using certain

style. For example, the window can be made non-resizable or non-closable, text and

textarea can be disabled so that the keys pressed are not displayed.

Menu Management

Each window can optionally have a menu. This menu has a menu bar on top

below the title bar and a drop-down menu interface. The client application this

hierarchy of menu and sends a request message to the GUI. The GUI server handles

the click event on the menu bar and displays or hides the drop-down menu

alternatively. When a menu item is clicked, the GUI server sends a message to the

client which contains the id of the clicked menu item. The client can do the respective

actions depending on the id of the menu item that was clicked.

Alias Id Mapping

The client uses a unique id for windows and components that it creates. The

alias id’s namespace is only within a process space. So, the (pid, alias id) pair is

unique. The GUI maps between this alias id and the actual id that the GUI uses. This

helps the application to handle events related to the component easily. The client

sends the alias id of a component during its creation to the GUI server which maps

this id into the id in its space. In all further communications, the client uses only this

alias id and the GUI server uses this for getting actual id. The GUI maintains a list of

windows and components that are indexed with this actual id.

Z-Order Processing

The processing of a mouse click and the painting of windows are done with

the help of a z-order queue structure. As windows are shown, they are added in the

top of the z-order queue. The click event is processed from the top of the z-order

queue to the bottom. And if within the specific window, actions are taken depending

on whether it was clicked on the title bar or any components. When painting the

windows, the windows are painted from the bottom of the queue to the top, so that the

top-most or the recent window is shown.

92

Dynacube Operating System

5.6.2 Client Interface Design

The client process can create, destroy, show, hide, disable, enable windows

and components, dialogs and menus. The client does so by using certain functions.

The client can have alias id for each of these and using the alias id they can handle

events. The GUI process has a specific format of message that is sent when a event

occurs.

Functions Provided

The functions defined are:

1. Create – This type of function is defined for window, all components and

dialogs. It has the parametes of starting co-ordinates, width, height, alias id,

style. For windows, the title can also be passed. For components, the container

id is passed.

2. Destroy – This function is used for destroying a window. It takes the alias id

as the parameter.

3. Show – This function is used for displaying the window. It takes the alias id of

the window as the parameter.

4. Hide – This prevents the window from being painted. It also takes the alias id

as argument.

5. Resize – This is used for resizing the window. It takes the alias id, the new

starting position and the new width and height of the window.

6. Enable – This is used for enabling the window or components. Enabling

makes the window or components to respond to mouse and keyboard events as

defined.

7. Disable – This makes the window and components not to respond to mouse

and keyboard events.

8. SetText – This function is used for changing the current text in text and

textarea components.

9. GetText – This function is used for getting the current text in text and textarea

components.

93

Dynacube Operating System

10. isChanged – This funtion is used for checking whether the state of the text or

textarea is changed.

Styles Defined

There are specific styles that are defined for the windows and components.

These styles can be specified when they are created. They are as follows:

For windows, the styles defined are:

1. W_MINIMIZE (0x2) – This style sets the state of the window as

minimized.

2. W_MAXIMIZE (0x4) – This makes the state of the window as

maximized.

3. W_DISABLED (0x8) – This disables the window.

4. W_NORESIZE (0x10) – This style disables the maximize/restore

button on the title bar so that the window stays in its initial state.

5. W_NOCLOSE (0x20) - This style disables the close button on the

title bar so that the window is not closed on its click and only a

message is sent to the client. The client can choose whether the

window must be destroyed or not.

Styles that are common to all components are:

1. HIDDEN (0x1) – This prevents the component from being

displayed.

2. DISABLED (0x2) – This prevents the component from responding

to mouse clicks and keyboard events.

Handling Events

The client after performing the creating and displaying functions can wait for

event messages from the GUI. The type of messages the GUI can send are:

 1. WM_DESTROY (0x1) – This message is called when the window is

closed. The body of the message has the alias id of the window.

 2. WM_CLICKED (0x2) – This message is called when a click occurs on a

button or a menu. The alias id is passed in the body of the message. The sub type

indicates this which can be:

94

Dynacube Operating System

i) BUT_TYPE

ii) MENU_TYPE

3. WM_KEYPRESS (0x3) – This message is called when a key is pressed.

The sub type can be:

i) TEXT_TYPE

ii) TEXTAREA_TYPE

5.6.3 GUI Message Syntax

The client interface makes use of the message-passing model of our kernel to

accomplish the defined functions. There are messages of specific formats that are

sent.

The type of the message can be any of the following depending on the

function to be performed:

1. CREATE – The subtype can have the values of WINDOW, BUTTON,

TEXT, TEXTAREA, MENU, LABEL,FOLDERVIEW and DIALOG. The

body of the message has the following structures. For windows, it can have the

structure contains the x, y , width, height, style, alias_id, title. For

components, the structure has container id and the type in addition to the

above. For menu, a pointer to a menu bar structure is sent. It in turn contains

the

i) Number of top level menus

ii) Array of Menus

The menu in turn contains

i) The name of the menu

ii) Number of Sub-menu items

iii) Array of Sub-menu items

The menu item is composed of

i) Menu id – This is sent by the GUI server when this sub menu item

is clicked.

ii) Name of the menu item.

2. SHOW – The subtype can have the values of WINDOW, DIALOG. The body

contains the alias id.

95

Dynacube Operating System

3. HIDE - The subtype can have the values of WINDOW, DIALOG. The body

contains the alias id.

4. RESIZE - The subtype can have the values of WINDOW. The body contains

the alias id of window, new x, y, width and height.

5. ENABLE - The subtype can have the values of WINDOW, BUTTON, TEXT

and TEXTAREA. The body contains the alias id.

6. DISABLE - The subtype can have the values of WINDOW, BUTTON,

TEXT, and TEXTAREA. The body contains the alias id.

7. DESTROY - The subtype can have the values of WINDOW, BUTTON,

TEXT, TEXTAREA, MENU, LABEL, FOLDERVIEW and DIALOG. The

body contains the alias id.

8. FINISHED – This message is sent by the client after processing a

WM_CLICK event of the button. After the click of the button until this

message is invoked, the window is disabled. Only after the client sends this

message the window can respond to other events.

9. SET - The subtype can have the values of TEXT, TEXTAREA. The body

contains the alias id and the pointer to the string.

10. GET - The subtype can have the values of TEXT, TEXTAREA. The body

contains the alias id and the pointer to the string.

11. CUT - The subtype can have the values of TEXT, TEXTAREA. The body

contains the alias id.

12. COPY - The subtype can have the values of TEXT, TEXTAREA. The body

contains the alias id.

13. PASTE - The subtype can have the values of TEXT, TEXTAREA. The body

contains the alias id.

14. IS_CHG - The subtype can have the values of TEXT, TEXTAREA. The body

contains the alias id. It returns whether the text or textarea was changed.

Apart from these, there is a category of message received by the GUI. These are

from the kernel when a mouse is clicked or a key is pressed.

96

Dynacube Operating System

15. ACTION - The type of the message contains this value and the subtype can

have a value of MOUSE or KBD. For the subtype of MOUSE, the body of the

message consists of

i) The x and y point co-ordinates

ii) The status – whether it is a click or a move.

For the subtype of KBD, the body of the message contains

i) The character’s ascii value

ii) The state – whether CTRL, SHIFT, ALT key is pressed and

whether CAPS lock is on.

97

Dynacube Operating System

5.6.4 Implementation of the GUI Server

The various sub modules were implemented and tested with the sample

applications. The sub modules and their functions are explained below.

GUI Server startup and the run

This has functions for starting this special process with higher priority. It

initializes the stack, code and data segments of this process. The GUI server first

executes the recv system call and branches out to the message handler function. After

processing of the request, it invokes the special GUI processing over system call.

Alias Id Mapping and the list maintenance

This module maintains two basic data structures. One for the mapping

between the alias id the client sends and the other for the maintenance of lists of

window and component pointers. The alias id mapping is done with the structure

which has

i) Type

ii) Alias id

iii) Id

 The list manipulations use the structure, which contains

i) Type

ii) Id

iii) Pointer depending on the type.

There are functions that add, remove, remove all by process id, find by alias id

and find by id present. The add method is invoked when a window or component is

created. The remove is invoked on destroy. The find methods are invoked on all

messages for getting the actual id.

Z-Order Processing

This is a queue with additions on one end. It has a structure, which contains

i) Process id

ii) Window id

iii) Task id.

98

Dynacube Operating System

 There are methods for addition and removal based on the id or process id.

There is one other important moveTop. This is used for moving a window from

somewhere in the order to the top. This is invoked when a click on the window

occurs.

Window Management

The window was implemented as a C ++ class.

Window

 win_init

paint_win

freeAll

findEntity

 activate

deactivate

keyPress

 menuInit

 processMenu

 move

 attachDialog

detachDialog

attachComponent

Figure 5.32: Class Diagram of the Window

The various data that are to be maintained about a window are:

1. id, style, title

2. x, y, width, height

3. comp_focus – This is used for identifying the component which has the

focus so that all key press go to this.

4. num_comps – Number of Components attached to it.

99

Dynacube Operating System

5. Array of Component pointers

6. hasMenu – it indicates whether this window has a menu.

7. menubar *MenuBar – The pointer to the menubar if window is present.

8. COLOR *buf – This is used for moving the window at which point the

back image is buffered here.

9. window *diag – This stores the pointer to the dialog, if one is present.

The various functions that were implemented were:

1. win_init – This is called when the object is created. It initializes all the

data.

2. paint_win – This is called for drawing the window. It in turns the

components, menu and dialog if present.

3. freeAll – This is called when this window is destroyed. It frees the

components and menu if present.

4. findEntity – This is called when the window is clicked. It checks for the

component which was clicked.

5. activate – This enables the window by changing the style.

6. deactivate - This disables the window by changing the style.

7. keyPress – This is called when a key was pressed and this is the window

on focus.

8. menuInit – This is called when a menu is created for this window.

9. processMenu – This is called when the click was within the menu area.

10. move – This is called when the window is moved. This restores the image

present behind the window and backs up the image on the new location

and draws the window.

11. attachDialog - This is called when a dialog is created for this window.

12. detachDialog – This is called when a dialog is removed for this window.

13. attachComponent – This is called when a component is added in this

window.

Component Management

The various data that it stores are:

1. Type of Component

2. id, container id,alias id

100

Dynacube Operating System

3. x, y, width, height – This is relative to the container

4. Pointer to container, container type

5. Style

All components inherit from the base class component.

Figure 5.33: Class Diagram of the Component

 comp_init

activate

deactivate

Component

Button Class

This inherits from the component class. It implements all the necessary

behavior of the button.

but_init

paint

react

Button

Figure 5.34: Class Diagram of the Button

The data elements in this class are:

1. label – this holds the text to be displayed on the button.

2. state – This holds the state of the button. This is used when the

button is painted. It is set to pushed_back state when it is clicked.

The various functions that are present in this class are:

101

Dynacube Operating System

1. but_init – This is called when an object is created for this class. It

initializes all the values.

2. paint – It paints the button depending upon the state.

3. react – This method is called when a click occurs on the button. It

disables the parent window and changes its state.

Text Class

This is also a subclass of text. The additional data elements present are:

1. txt – This stores the text that is displayed on the textbox.

2. total_chars, allow_chars – The count of characters that are present and the

allowable number of characters depending on the width of the textbox.

3. start – This is the character number starting from which the text is

displayed. This is changed when a navigation key (arrow keys or home or

end key) is pressed.

4. curs – This is the current location of the cursor. This is used for setting the

globally shared cursor. Only from this position, that characters are

inserted.

5. sel start, sel end – This indicates the starting and ending character that is

selected. This is used for displaying the highlighted portion of the text and

to execute a copy or cut or delete.

6. is sel – This indicates that whether any portion is selected or not.

7. changed – This indicates whether the text has been changed after it was

set.

102

Dynacube Operating System

text_init
setText
getText

paint
update_cursor

react
keyPress

copy
cut

paste
ischg

Text

Figure 5.35 – Class Diagram of Text

The member functions in this class are:

1. text_init – This is used for setting the intial values.

2. setText – This function sets the current text value to the text sent by the

client.

3. getText – This function returns the current text to the client.

4. paint – This function displays the textbox. It checks for the selection data to

dispay highlighted text portions.

5. update_cursor – This method is called on navigation to update the cursor. It

changes the start location if the cursor goes beyond the allowable character.

6. react – This method is called when a mouse click occurs within the region

of the text. It reacts by updating the cursor and displaying it. Also sets this

text as the focus component.

7. keyPress – This is called when the key is pressed with this as the component

in focus. It either displays the character typed or updates cursor on a

navigation keys or selects the text on selection keys or take any

corresponding editing actions.

8. copy – This is invoked on request from the client or when the special key is

pressed. It stores the selected portion into a globally shared clipboard.

103

Dynacube Operating System

9. cut – This is called on message from client or on a special key. This stores

the selected portion into the clipboard. It also removes the selected portion

of text.

10. paste – This inserts the text from the global clipboard to the current cursor

location. It pushes the rest of the text backwards.

11. isChanged – This function returns whether the text has been changed after

the text has been set.

TextArea

This class also inherits from the component class. It is almost similar to the

text but has another dimension for all parameters. The text is a two dimensional array.

The starting position also indicates the row and column. The cursor is also a two

dimensional quantity indicating the row and column. The methods are also similar but

it also has the functionality to manipulate many rows.

Label

This class inherits from the component class. It is used for displaying any

information. It has only one member: the label – the text that is to be displayed.

label_init

paint

Label

Figure 5.36 – Class Diagram of Label

The member functions are:

1. label_init – Initializes a newly created object of this class.

2. paint – Paints the label to the allowable width.

104

Dynacube Operating System

FolderView

The folderview component is used for providing file and directory browsing. Thus

component inherits from the component class.

This component has the following members

1. cache – This is an array of DIRENT structure that is used to cache up a folders

contents. The use of this cache is to reduce the overhead of reading the file

from the file system for every repaint.

2. inited – This field is used to check whether the current cache is valid or not.

3. dirname – This member contains the name of the present working directory.

4. no_entries – This field contains the number of valid entries into the

components DIRENT cache.

folderview_init

populate

paint

drawFiles

react

keyPress

FolderView

Figure 5.37 – Class Diagram of Folderview

The folderview component has the following member functions:

1. folderview_init – This is used to initializ the folderview component and

inform it about its coordinates and size.

2. populate – This method is provided to allow the client application to populate

the cache of the folderview.

105

Dynacube Operating System

3. paint – This function is exposed to draw the component. The GUI Server when

painting this component invokes this method.

4. drawFiles – This is an internal function that is used to paint the internal

contents of a folder basically from the cache. If the inited is set to false it calls

informs the client application to populate the cache with valid entries.

5. react – This is basically an event handler function that is used to handle events

from the mouse.

6. keyPress – This is another event handler that handles events from the

keyboard. The folderview component allows only arrow keys, page up key,

page down key for navigation and the enter key for opening files and folders.

Desktop and Taskbar Management

The various methods involved in the desktop and taskbar painting are:

1. drawDesktop – It paints all the icons onto the respective locations

2. drawTaskbar – It paints the start menu, the various window tasks and the

timer.

3. drawTime – This is called from the timer interrupt whenever the time needs

to be updated.

Figure 5.38 – Class Diagram of StartMenu

startmenu_init

draw

processClick

StartMenu

The various methods involved in the desktop and taskbar event management are:

1. ProcessStartMenu – It processes the clicking of items in the start menu. It

uses the current state of the start menu to either display it or hide it or process

an event.

106

Dynacube Operating System

2. ProcessTask – It processes the clicking on the task links so that the window is

toggled between maximized/restored to minimized.

The start menu is implemented as a class. The various data present in it are:

1. startopened – indicates whether the menu is clicked open or not.

2. x , y , width , height

3. COLOR *bk_buf – Used for backing up the background data

4. no_items - The number of menu items

The various methods present are:

1. startmenu_init – Initializes the values

2. draw – paints the menu depending on the state

3. processClick – called when a mouse click occurs.

Menu Management

The menu is implemented as classes, which are added to windows. There are

two base classes: menu and the menu bar. There is one another structure for the menu

item.

The menu item is composed of the two elements:

1. label – The string displayed in the drop-down menu item

2. Code – This is the id of the item. The client sends it when the menu is created.

It is sent to the client to indicate that this menu item has been clicked so that

suitable actions can be taken at the client side.

The next is a class that corresponds to each drop-down menu. The various data

elements are:

1. Container id and pointer

2. x, y, width, height

3. Number of items present

4. Array of the menu items present

5. COLOR *buf – a backup buffer for caching the background data when the

menu is dropped down. When the menu is restored, the background

information is painted.

107

Dynacube Operating System

paint

menu_init

process

menu_restore

Menu

Figure 5.39 – Class Diagram of Menu

The member functions in the menu class are:

1. menu_init – This initializes the data related to the menu.

2. paint – It paints the menu after grabbing the data behind it.

3. process – It is called when a click occurs on this drop down menu. It identifies

the corresponding menu item and sends a message indicating it has been

clicked.

4. menu_restore – This is done when the menu is being removed when the

menubar is clicked again. This restores the background data that was cached.

The next is a class that corresponds to the menu bar. The various data elements

are:

1. Container id and pointer

2. x, y, width, height

3. Number of top-level menus

4. Current menu if, any that is opened.

5. A structure containing the menu pointer and label of each top-level menu.

The various member functions that are present in the class are:

1. menubar_init – This initializes the data related to the menubar, the menu, and

the menu items.

2. paint – It paints the menu bar below the title bar of the window.

3. process – It is called when a click occurs on this window. It checks whether it

is within a specific menu. If so, it displays or removes the drop-down menu

depending on the current state of the menu.

108

Dynacube Operating System

4. freeAll – It is called when the menu is destroyed. It removes all the associated

pointers.

paint

menubar_init

process

free_all

MenuBar

Figure 5.40 – Class Diagram of Menubar

Global Objects

There are two objects of the following two classes that are shared by all text

and textarea components. Only one cursor object is present at any time. The clipboard

is also global allowing for the data movement from one text/textarea to other.

Cursor

The cursor is implemented with a class. If a cursor is present, then it is painted

once in a specific number of timer events to get the blinking effect.

The data elements present in the cursor class are:

1. The location of the cursor – It is set by the component that requires a

cursor.

2. State – It indicates whether a cursor is present or not.

3. Number of times – It indicates the number of timer interrupts after

which the cursor is repainted.

The member functions of this class are:

1. Cursor_init – This is called once when the global cluster is created.

2. setCursor(POINT pt) – This is called by the various components

which sets the cursor to the specific locations.

3. POINT getCursor() – This returns the current cursor location.

4. show – This sets the state of the cursor to be visible.

109

Dynacube Operating System

5. hide – This sets the state of the cursor to be invisible.

6. paint – This paints the cursor and is called by the timer interrupt

handling routine. It is alternatively painted in black and white.

7. erase – This is called when the cursor is being removed.

cursor_init

setCursor(POINT pt)

POINT getCursor()

show

hide

paint

erase

Cursor

Figure 5.41 – Class Diagram of Cursor

Clipboard

There is a globally shared structure, which contains the copied text and an

indication whether there is any text in clipboard. When a text/ textarea copy is

performed, then the data is placed in this buffer. When a paste is done, the data in this

clipboard is copied from here to the corresponding component.

Request Handler Methods

The GUI server gets request methods from clients to perform certain

operations and messages from the kernel on certain events like mouse click or key

press. The processing done on each of these requests is as follows:

1. Create – for the window and all components. The steps done are:

i) Extract the information from buffer. For components,

check if container is present.

ii) Allocate memory space for the component or window by

using the memory allocator provided by the kernel.

110

Dynacube Operating System

iii) Add the alias id mapping and the pointers to the

corresponding structure based on the process id.

iv) Initialize the allocated space with the passed values

through the respective init methods.

2. Show – for windows and dialogs

i) For window, check if the alias id is present. If so, get the

actual id and add it to the z-order on top. Change the

state.

ii) For dialog, check if the alias id is present. If so, add the

dialog pointer to the parent window

3. Hide – for windows and dialogs

i) For window, check if the alias id is present. If so, get the

actual id and remove it from the z-order. Change the state.

i) For dialog, check if the alias id is present. If so, remove

the dialog pointer from the parent window

4. Resize – for windows. Check if the alias id is present. If so, change the

x, y, width and height accordingly.

5. Enable – for window and all components. Check if the alias id is

present. If so, change the style accordingly.

6. Disable – for window and all components. Check if the alias id is

present. If so, change the style accordingly.

7. Destroy – for window and all components. The steps performed for

this

i) Check if alias id is present.

ii) Call the freeAll method in window for freeing all

components

iii) Deallocate memory space for the component or window

by using the memory allocator provided by the kernel.

iv) Remove the alias id mapping and the pointers to the

corresponding structure based on the process id.

8. Action – for mouse and keyboard events

i) Mouse – Check if click is on taskbar items. If so call the

process function of taskbar. Process the z-order from top

to check if click is within a window. If so , check for

111

Dynacube Operating System

clicks on specific components by calling the findEntity

method. If there is a click on the component, ask the

component to do the necessary steps by calling its react

method. Send the message to kernel if click is on button

or menu. Set the corresponding window as focus. Move

the window to the top of z-order. If the event is move,

then call the window’s move event.

ii) Keyboard – Check if there is any window on focus. If so,

call the respective keyPress method. This method checks

if there is any component on focus. If so, it calls the

keyPress method of the component.

9. Finished – the client sends it after the processing of a button click

event is over. The steps done are:

i) Check if the alias id is present.

ii) If so, enable the parent window so that it can receive the

mouse and keyboard methods.

Painting Method

This method is called whenever any change is made to the z-order

1. Paint the window from the top of the z-order by calling the paint method of

the window. It calls the paint method of the components, dialog and menubar.

2. Draw the taskbar items, timer and the start icon.

3. Draw the desktop and the icons.

112

Dynacube Operating System

6. SAMPLE APPLICATIONS

The Dynacube operating system’s main modules were tested using three

sample applications. They are the:

1. DynaPlorer

2. DynaPad

3. DynaCalc

6.1 DYNAPLORER

 This Gui-based file browser helps in creation, removal, and copying of

the folders and files. It uses the folderview component of GUI. It has a menu driven

interface for file and directory based operations. This acts as a test bed for the

following modules:

File System – As it uses the file and directory create, open, read, write and

close calls.

Floppy Device Driver - As the file system uses the floppy’s read and write

sector.

GUI Server – It uses the window, component and menu, and dialog functions

of GUI.

Kernel Module – It runs as a separate process and thus uses the process and

memory modules of kernel.

Device Driver Module – It uses the mouse and keyboard handling

functionality provided by the GUI server.

6.2 DYNAPAD

This is a GUI-based file editor, which helps in creating and editing files. It

uses the textarea component of the GUI library. It has a menu driven interface for file

and edit operations. It maintains a session interface and indicates an error when a file

that is changed is not saved. It also acts as a test bed for the all modules that were

tested in the DynaPlorer application.

113

Dynacube Operating System

6.3 DYNACALC

 This is a GUI-based calculator. It is used for performing the basic calculations.

It uses the button component of GUI for the getting input from the user, and the

text component, which is disabled to direct keyboard input. This is done to

prevent the user from entering irrelevant information into the text component.

This application acts as a test bed for the following modules:

GUI Server – It uses the window, component and menu, and dialog functions

of GUI.

Kernel Module – It runs as a separate process and thus uses the process and

memory modules of kernel.

Device Driver Module – It uses the mouse and keyboard handling

functionality provided by the GUI server.

114

Dynacube Operating System

7. SCREENSHOTS

The following screenshots show the user-friendly Graphical User Interface (GUI)

provided by the Dynacube operating system.

7.1 DynaPlorer Screenshot

115

Dynacube Operating System

7.2 DynaPad Screenshot

116

Dynacube Operating System

7.3 DynaCalc with other applications – Test for overlapped windows

117

Dynacube Operating System

8. CONCLUSION

 The project has successfully achieved its stated goals. We have implemented

and thoroughly tested all the modules – Dynacube kernel, Dynacube Disk Server,

Dynacube File Server, and the Dynacube GUI Server module. This project has

improved our understanding of operating systems and helped us analyze it from a

different perspective. We have unraveled the mysteries shrouding computer hardware,

system level programming, and system software. We have mastered the control flow

analysis of Intel processors. We have honed our design skills, and have grasped the

concept of virtualization of hardware resources.

 We have also found out that using advanced technologies in the development

of large projects can help in considerably reducing the development time. We used

System Simulators to test our operating system during the initial phases of our project,

which drastically reduced the development time. Otherwise we would have wasted far

more time in booting up our system rather than developing our Dynacube operating

system.

Having completed our project, we are looking forward to make the following

enhancements to our project in near future:

� Extend Dynacube to 64bit architectures.

� To provide SMP support.

� To port GCC and G++ to our Dynacube operating system.

� To include File System support for EXT2, EXT3 and NTFS formats.

� To create separate ABIs for porting applications written for Linux and

Windows.

� To provide Unicode support.

� To provide more sophisticated user interfaces.

� To design a configurable Window manager.

118

Dynacube Operating System

9. BIBLIOGRAPHY

The following literatures were consulted during the course of development of
Dynacube Operating System.

Design Literature

• Andrew S. Tanenbaum and Albert S. Woodhull, Operating Systems: Design
and Implementation

• Douglas Comer and Timothy V. Fossum, Operating System Design: The
XINU Approach

• Microsoft Official FAT12 documentation

Hardware Literature

• IA-32 Intel Architecture Software Developer’s Manual Volume 1: Basic
Architecture

• IA-32 Intel Architecture Software Developer’s Manual Volume 2: Instruction
Set Reference

• IA-32 Intel Architecture Software Developer’s Manual Volume 3: System
Programming guide

• VESA BIOS EXTENSION (VBE) Core Functions Standard Version: 3.0
• Adam Chapweske, PS/2 Keyboard Interface.
• Adam Chapweske, PS/2 Mouse Protocol.
• NEC µPD765 and Intel 82072-7 Floppy Disk Controller specification.
• Xavier’s Programmable Interrupt Controller documents
• Programmable System Timer documents.
• CMOS tutorials
• DMA tutorials

Implementation Literature

• Andrew S. Tanenbaum and Albert S. Woodhull, Operating Systems: Design
and Implementation

• Official GCC man pages
• NASM Documentation
• Randall Hyde, Art of Assembly
• Brennan’s Guide to Inline Assembly by Brennan Underwood
• Tim Robinson, Virtual 8086 mode

Web-links

• www.osdev.org
• www.osdever.net
• www.osjournal.com

119

http://www.osdev.org/
http://www.osdever.net/
http://www.osjournal.com/

	Web_Final_pr.pdf
	Web_Final_pr.pdf
	1. SYNOPSIS
	3. INTRODUCTION
	4. GENERAL DESIGN
	4.1 Design Goals
	4.2 Architectural Choice
	Minimum System Requirement

	4.3 Conceptual Design
	4.3.1 Dynacube Kernel
	4.3.2 File Server
	4.3.3 Disk Server

	4.4 Design Issues and Constraints
	5.2 Process Module Design
	5.2.1 Forking
	5.2.3 Twin-TSS based Multitasking
	Table 5.3 - Code Snippet showing the logic behind Twin-TSS b

	5.2.4 Scheduling Policy
	5.2.5. Queue Design
	5.2.6 Message Passing Interface

	5.3. Memory Module Design
	5.3.1 BIMA – Bitmap Memory Allocator
	5.3.2 Variable Memory Chunk Allocator Design

	5.4 Device Driver Module
	5.4.1 Introduction
	5.4.2 PS/2 Keyboard Driver
	The Keyboard Controller

	5.4.3 PS/2 Mouse Driver
	Figure 5.14 Mouse movement byte

	Mouse and Keyboard Driver design and implementation
	5.4.4 SVGA Video driver
	VBE functions for Mode Setting and Retrieval
	VBE Mode Number
	VBE Mode Information Retrieval
	VBE Mode Setting
	Linear Frame Buffer Model
	Double Buffering
	Primitive Graphical Library Functions

	5.4.5 Floppy Device Driver
	Basics of Floppy drive
	Floppy Controller Specification
	Floppy Drive Controller Registers
	Digital Output Register DOR

	Main Status Register
	Data Register
	Status Register ST0
	Status Register ST1
	Status Register ST2
	Status Register ST3
	FDC Command Set
	Command Phases
	Figure 5.22 - Commands returned during Result Phase

	Read Sector
	Figure 5.23 - Command Phase of Read Sector
	In the result phase, the controller returns the standard inf

	Write Sector
	Seek
	Figure 5.25 - Command Phase of Seek

	Recalibrate Drive
	Sense Interrupt
	Floppy Driver Interface
	System Call Interface
	Error Values
	Floppy Server Architecture
	Flow of Control on a system call
	Elements in a Floppy Server request
	Interrupt Handling
	Description of Functions

	5.5 File System Module
	5.5.1. FAT12 Specification
	FAT Data Structure
	FAT12 Entry Values
	FAT12 Entry Packing
	Cluster Chaining
	Example of Chaining
	FAT Directory Structure
	DIR_Name[0]
	Date and Time Formats
	FAT Long Directory Entry Structure
	Organization and Association of Short & Long Directory Entri
	The Basis-Name Generation Algorithm
	The Numeric-Tail Generation Algorithm

	5.5.2. File System Interface
	5.5.3 File System Server Architecture
	Descriptor and Buffer Management
	Elements of Descriptor
	Buffer Management
	Request Handler Methods
	Creating a file
	Creating a directory
	Opening a file or a directory
	Reading or Writing to a file
	Closing a file
	Removing a file
	Renaming a file
	Loading a program
	Formatting or FAT Volume Initialization

	5.5.4 Implementation of File System
	Stages in Implementation

	5.6. DServer (GUI) Module Design
	5.6.1 Conceptual Design
	GUI Server and the Request Handling
	Desktop and Taskbar Management
	Window and Component Management
	Menu Management
	Alias Id Mapping
	Z-Order Processing

	5.6.2 Client Interface Design
	Functions Provided
	Styles Defined
	Handling Events

	5.6.3 GUI Message Syntax
	5.6.4 Implementation of the GUI Server
	GUI Server startup and the run
	Alias Id Mapping and the list maintenance
	Z-Order Processing
	Window Management
	Component Management
	Button Class
	Text Class
	TextArea
	Label

	Figure 5.36 – Class Diagram of Label
	FolderView

	Figure 5.37 – Class Diagram of Folderview
	Menu Management

	Figure 5.40 – Class Diagram of Menubar
	Global Objects
	Cursor
	Clipboard
	Request Handler Methods
	Painting Method

	6.1 DynaPlorer

	Design Literature
	Hardware Literature
	Implementation Literature
	Web-links

